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Introduction : AgNiO2

AgNiO2 is a metallic magnetic oxide studied in the Physics department
of the University of Bristol. The crystal structure comprises stacked triangular
lattices planes (Ni3+,O2− and Ag+). A reconstruction of neighbouring O ions
divides the Ni ions with valence 3+ into a triangular lattice of Ni2+ ions and
a honeycomb lattice of Ni ions with average valence 3.5+. The Ni2+ ions are
believed to be well-formed spin S=1 local magnetic moments while electrons on
the Ni3.5+ ions are itinerant. The triangular lattice of Ni2+ ions is magneti-
cally ordered below a temperature TN = 19.7 K. Order is of a colinear Néel
antiferromagnet type, with alternating stripe of up and down spins. The aim of
this report is to develop a model of the spin dynamics of the ordered phase of
AgNiO2 which can be compared with the experimental data.

Figure 1: Structure of the AgNiO2 crystal. Right : global structure presenting
all the planes of ions. Left : Ni ions con�guration in a plane. (Figure from [8]).

The �rst chapter of this report introduces spin wave theory as an approach
to calculating the excitations of a quantum magnet including the leading cor-
rections due to interactions. These techniques are then applied to the simplest
model which can reproduce the form of magnetic order seen in a single plane of
AgNiO2. The second chapter is about the speci�c adaptation and application
of this theory to a neutron scattering experiments, adding the third dimen-
sion to our calculations, and discussing the constraints on parameters set by
experiments.
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Chapter 1

Introduction to spin wave

theory and its application to

simple 2D models

1.1 Spin waves in lattices

Heisenberg model

To describe the physics in a crystal lattice, we have to assume how the atoms in
di�erent sites interact one with each other. Heisenberg proposed the model of
magnetic ions interacting with their neighbors by exchange interaction, the en-
ergy of a bond being J ~Si · ~Sj . The constant J is a characteristic of the intensity
of the rate at which electrons are exchanged between magnetic ions. The sign
of J a�ects strongly the interaction since J < 0 corresponds to ferromagnetic
interaction (the Hamiltonian will tend to have all the spins pointing in the same
direction) whereas J > 0 corresponds to antiferromagnetism.

The simplest Hamiltonian we can produce with Heisenberg model is the one
where each atom only interacts with its nearest neighbors without any exterior
magnetic �eld. We have (the sum runs over all nearest neighbour bonds, each
counted once):

H = J
∑
〈ij〉1

~Si · ~Sj (1.1)

Figure 1.1: Representation of the two Heisenberg models for a square lattice
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We can now add a second-range interaction between next-nearest neighbors
to this one and we will obtain the J1-J2 Heisenberg model, frequently refered
as the J1 − J2 model :

H = J1

∑
〈ij〉1

~Si · ~Sj + J2

∑
〈ij〉2

~Si · ~Sj (1.2)

Spin waves

The classical ground state of the Heisenberg model is the con�guration mini-
mizing the energy H when spins are treated as clasical O(3) vectors. Spin wave
theory gives us a systematic way of treating the quantum �uctuations about this
state by mapping them onto a set of simple harmonic oscillators. For example,
in a ferromagnet, with all the spins being in the same direction, let say Sz, these
�uctuations will give :

Sx = 0  Sx 6= 0
Sy = 0  Sy 6= 0
Sz = S  Sz = S − n n ∈ Z

This produces a gain in energy which is a quasi particle a (a boson to be
precise, the magnetic equivalent of a phonon, then called a magnon) with the
relation n = a†a. The correct spin algebra is recovered if we write these changes
as following, using the relations S+ = Sx + iSy and S− = Sx − iSy[3] :

Sz = S − a†a (1.3)

S+ =
√

2S − a†a a (1.4)

S− = a†
√

2S − a†a (1.5)

~Si · ~Sj = Szi S
z
j +

1
2
(
S+
i S
−
j + S−i S

+
j

)
(1.6)

Formally, we treat 1/S as a small parameter (cf 1.3) and introduce a set of
bosons [a, a†] = 1 which can be used to represent the spin algebra [Sx, Sy] = iSz.

1.2 Simple applications of spin wave theory

1.2.1 Ferromagnetism in a square or cubic lattice

Expanding in 1/S order of magnitude around a ferromagnetic ground state the
Hamiltonian gives :

H = − |J |
∑
〈ij〉1

~Si · ~Sj (1.7)

= −zN
2
|J |S2︸ ︷︷ ︸

E0

+ |J |S
∑
〈ij〉1

(
a†iai + a†jaj − a

†
iaj − a

†
jai

)
+O

(
E0

S2

)

where we have put z equal to the number of nearest-neighbors (z=4 for the
square lattice, z=6 for the cubic) and N the number of atoms in the crystal.
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We now use a simple Fourier transformation to obtain the Hamiltonian as a
function of a†~qa~q, which represents a spin wave with wave vector ~q. We neglect

all the terms smaller than E0/S (cf 1.3).

ai =
1√
n

∑
~q

a~q e
i~q·~ri (1.8)

H = E0 +
∑
~q

|J |Sz (1− γ (~q))︸ ︷︷ ︸
ω(~q)

a†~qa~q (1.9)

where γ (~q) =


1
2 (cos qx + cos qy) for the square lattice

1
3 (cos qx + cos qy + cos qz) for the cubic lattice

Figure 1.2: Dispersion spectrum for a square lattice ferromagnet, left with J1

model, right with J1 − J2 model and a ratio J2
J1

= 1
2 .

The pro�le of the dispersion in Fig. 1.2 show a parabolic pro�le at the origin,
typical of the ferromagnets. Including an antifarromagnetic second range inter-
action J2 does not lead to any qualitative changes in the spin wave dispersion
for J2〈J1/2.

1.2.2 Antiferromagnetism in a square lattice

AgNiO2 has a colinear antiferromagnet ground state. To develop a spin wave
theory of this, we will need techniques suited to Néel order. We start here
with the simplest model, a Heisenberg model on a square lattice with antifer-
romagnet nearest neighbours interactions, the colinear antiferromagnet (CAF)
being studied in the appendix A.2. First of all, we have to specify what the
Hamiltonian is :

H = + |J |
∑
〈ij〉1

~Si · ~Sj (1.10)

As we can see in Fig.1.3, we can consider this lattice as the union of two
square sublattices with spins pointing respectively up (blue arrows, refered to as
A below) or down (red , B). At each bond, the spins of the two atoms considered
point in opposite directions. This will lead to some changes in our description of
quantum �uctuations of the spin B (pointing downwards). We will introduce :

SzB = −S + b†b

S−B =
√

2S − b†b b

S+
B = b†

√
2S − b†b
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Figure 1.3: Left : Phase diagram of the classical magnetic ground state of the
Heisenberg J1 − J2 model as a function of the values of J1 and J2. Right :
Néel antiferromagnetic square lattice. The spins can be represented in the same
plane as the lattice because of continous degeneracy of the magnetic ground
state(cf. 2.1)

And this leads to a Hamiltonian :

H = −NzJ
2

S2 + zJS
∑
~q

[
a†~qa~q + b†−~qb−~q + γ~q

(
a~qb−~q + a†~qb

†
−~q

)]
(1.11)

= E0 +
∑
~q

[(
a†~q, b ~−q

)( A (~q) B (~q)
B (~q) A (~q)

)(
a~q
b†−~q

)
− A~q

]
(1.12)

introducing A (~q) = zJS

and B (~q) = zJSγ~q

The problem now is how to deal with the term proportional to a~qb~q + h.c.
which represents the destruction (creation) of two spin waves at the same time.
This arises from the di�erence in de�nition of spin operators between the A
and B sublattices. In order to remove this term from the Hamiltonian, we use
a Bogoliubov transformation (for detailed calculations refer to Appendix A) to
map this problem into a nex set of non-interacting bosons (i.e. a new set of
single harmonic oscillators). The (general) result we obtain after performing
such a transformation is that :

H = E0 +
∑
~q

ω~q

(
α†~qα~q + β†~qβ~q

)
(1.13)

ω~q =
√
A (~q)2 −B (~q)2 (1.14)

We can see these results in Fig. 1.4, the pro�le is now conic at the magnetic
ordering vectors (here at the corners of the Brillouin zone). This is characteristic
of the antiferromagnets.

1.3 O
( 1
S2

)
and interactions between spin waves

So far, we have carried out calculations in a linear approximation, considering
only terms quadratic in boson operators, which means that we have considered
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Figure 1.4: Dispersion spectra for antiferromagnetic lattices, from left to right :
NAF, CAF (J2 = J1

2 ), CAF (J1 = J2).

the magnons as non-interacting particles. This approximation is a very good
one for simple magnets with large spin S. However, AgNiO2 is a more complex
quantum magnet in which spin waves strongly interact with each other. We can
treat these interactions by calculating the dispersion spectrum to higher order
of magnitude, we will present two general ways of doing it with the ferromagnet
phase (the same calculations for the NAF are done in appendix B).

Ferromagnet

We remind what we have done for the calculations of the Hamiltonian of the
ferromagnet on a square lattice :

H = − |J |
∑
〈ij〉1

~Si · ~Sj (1.15)

= −zN
2
|J |S2︸ ︷︷ ︸

E0

+ |J |S
∑
〈ij〉1

(
a†iai + a†jaj − a

†
iaj − a

†
jai

)
︸ ︷︷ ︸

HLSW

+O
(
E0

S2

)

The LSW (linear spin-wave) term is the one we have calculated previously,
it corresponds to the linear part of the Hamiltonian, similar to the harmonic
oscillator. The aim of this section is to calculate the last term O

(
E0
S2

)
which is

a 1/S correction to LSW theory, abbreviated to �1/S correction� below. This
name must be taken carefully, actually, the expansion is formally in order of
magnitude of 1/S but even when 1/S = O (1) (as in AgNiO2), convergence is
guaranteed by the small order of magnitude of a†a. We can use two methods
for this, one consists merely in expanding the square root in the formula of S+

and S− one degree further. This gives:

H = E0 + HLSW +
1
N

′∑
1,2,3,4

ν12
34 a†1a

†
2a3a4 (1.16)

with ν12
34 =

J

2
[γ1 + γ2 + γ3 + γ4 − (γ3−1 + γ3−2 + γ4−1 + γ4−2)] (1.17)

We have used the abbreviations a1 = ak1 and γ3−2 = γ (k3 − k2) and the prime
means that the sum runs on every quadruplet of vectors of reciprocal space with
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respect to the condition k1 + k2 = k3 + k4 + G where G is a reciprocal lattice
vector. Since the bosons are identical, the Hamiltonian should be symmetric by
permutation of some indexes (here 1↔ 2 or 3↔ 4).

We can now calculate the 1/S correction in a mean-�eld approximation :
once we have established the term with four bosons, we use the mean values
of
〈
a†a
〉
to calculate the �rst correction to ω (~q). Here, the calculation of this

mean value gives (cf appendix B):〈
a†~qa~q′

〉
= δq,q′nB (ωq) where nB (x) =

1
ex/kBT − 1

We can now treat the interactions between spin waves in a mean �eld ap-
proximation :

H = E0 + HLSW +
∑
1,2

ν12
21a
†
1a1

〈
a†2a2

〉
(1.18)

H = E0 +

(
1−

∑
k′

nB(ωk′)
1− γk′
4NS

)
HLSW (1.19)

Since nB(ωk) −−−→
T→0

0, the linear spin wave theory is exact for zero temper-

ature. We can use the same method to calculate 1/S correction in an antiferro-
magnet, but in this case, 〈a†a〉 is not the only non-zero average which can be
formed of a four-bosons term :〈

a†qaq′
〉

=
〈
b†qbq′

〉
= δqq′

((
u2
q + v2

q

)
nB (ωq) + v2

q

)
(1.20)〈

a†qb
†
−q′

〉
= 〈aqb−q′〉 = −δqq′uqvq (2nB (ωq) + 1) (1.21)

Following this program, we �nd :

H T→0=

E0+LSW︷ ︸︸ ︷
JSz

∑
k

(εk − 1) +
∑
k

ωk

(
α†kαk + β†kβk

)
+

1
2S

2
N

∑
k

(1− εk)︸ ︷︷ ︸
A'0.158

∑
k

ωk

(
α†kαk + β†kβk

)
+ . . . (1.22)

The details of the calculations are given in the Appendix B, such as another
method to calculate the 1/S correction.

1.4 Colinear antiferromagnet

The inelastic neutron scattering experiments performed on AgNiO2 show that
the ions are placed on a triangular lattice, along one priviligied direction. In
each plane, the spins are oriented along stripes as described in Fig1.5.

Considering colinear antiferromagnetism leads necessarily to a J1−J2 model
since the J1 Heisenberg model minimizes its energy by having the spins non
colinear but oriented along three axis, obtained one from the other by a 120◦

rotation. A study of this expression gives precise values of the range of the ratio
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Figure 1.5: Colinear anti-ferromagnet in the triangular lattice con�guration

Figure 1.6: Phase diagram of the triangular lattice magnetic ground states in
function of the ratio J2/J1

J2/J1, it should run from 1/8 to 1[2] (cf Fig. 1.6). This consideration leads to
a Hamiltonian :

H = J1

∑
〈ij〉1

~Si · ~Sj + J2

∑
〈ij〉2

~Si · ~Sj

with J1 and J2 being positive. We re-use the same technique we have seen for
the square the square NAF and we obtain :

H = N (J1 + J2)S2︸ ︷︷ ︸
E0

+
∑
~q

ω (~q)
(
α†~qα~q + β†~qβ~q

)
(1.23)

ω (~q) =
√
A2 −B2 (1.24)

A = 2J1S

(
1 +

J2

J1
+ cos qx +

J2

J1
cos
√

3qy

)
(1.25)

B = 4J1S cos
√

3qy
2

(
cos

qx
2

+
J2

J1
cos

3qx
2

)
(1.26)

For comparison with experiments, it is convenient to represent the dispersion
by plotting its value on a path following symmetry directions of the Brillouin
zone. Here we have chosen a path starting from an ordering vector (center of the

second Brillouin zone) M
(

0, 2π√
3

)
then coming back to the center Γ (0, 0) where

the energy is zero. We then go to a corner of the Brillouin zone M'
(
π, π√

3

)
,

and �nally we follow the edge of the Brillouin zone until its middle (π, 0) and
go back to the center (cf Fig.1.7). This pro�le of the dispersion show that for
the value J2

J1
= 1

4 there is a degeneracy of the ground state : the dispersion is
zero at the ordering vectors as expected, but also at the soft point M'. This
leads to an instability in the magnetic order within linear spin wave theory.
The parabolic pro�le of the dispersion around M' show that this degeneracy
is accidental and should not remain when taking into account the interactions
between spin waves.
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Figure 1.7: Brillouin zone for the ferromagnet (black line) and for the CAF
(blue rectangle) and pro�le of the dispersion following the path drawn in purple
for the LSW theory model (dashed line) and with the 1/S correction (solid line),
J1 = 1.78 meV, J2/J1 = 0.25

1.5 1/S expansion in the case of the CAF

This apparent contradiction is resolved if we calculate the leading interaction
corrections to spin wave in this model. The expansion of the J1 − J2 model
gives, noting an = akn

, Ã = A
2J1S

, B̃ = B
2J1S

,ω̃ = ω
2J1S

and the prime on the
sum standing for the condition k1 + k2 = k3 + k4 :

H = E0 + HLSW + (1.27)

+
J1

2N

′∑
1234

(−f1 − f2 − f3 − f4 + f3−1 + f3−2 + f4−1 + f4−2)
[
a†1a
†
2a3a4 + b†1b

†
2b3b4

]
− 4

(
B̃3−2 + B̃4−1

)
a†1b
†
2b3a4

− 2B̃4 a
†
1a−2a3b4 − 2B̃3+4−2 a−1b

†
2b3b4 − 2B̃4 a

†
1a
†
2a3b

†−4 − 2B̃4−3−2 a
†
1b
†
2b
†
−3b4

fi = cos (kix) +
J2

J1
cos
(√

3kiy
)

(1.28)

The sum over k′ is calculated (it runs over the �rst magnetic Brillouin zone)
and with the N/2 prefactor it represents an average of the term summed; we
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then obtain the correction to Ak and Bk :

H = E0 + HLSW +
∑
k

(
a†k, b−k

)( δAk δBk
δBk δAk

)(
ak
b†−k

)
(1.29)

δAk = 2J1
2
N

∑
k′

Ãk′ − ω̃k′
2ω̃k′

F (k, k′) +
B̃2
k′

2ω̃k′
(1.30)

F (k, k′) = (1− cos kx) (1− cos k′x) +
J2

J1

(
1− cos

√
3ky
)(

1− cos
√

3k′y
)

− 2
(

1 +
J2

J1

)

δBk = 2J1
2
N

∑
k′

Ãk′ − ω̃k′
2ω̃k′

B̃k −
B̃k′

2ω̃k′
G (k, k′) (1.31)

G (k, k′) = cos
√

3ky + kx
2

cos

√
3k′y + k′x

2
+ cos

√
3ky − kx

2
cos

√
3k′y − k′x

2

+
J2

J1

(
cos
√

3ky + 3kx
2

cos

√
3k′y + 3k′x

2

+ cos
√

3ky − 3kx
2

cos

√
3k′y − 3k′x

2

)

This reproduces a result for this problem �rst obtained by A. Chubukov and T.
Jolicoeur in [2]. A simple inspection of these results shows that the two correc-
tions annihilates one each other on the ordering vector, but lift the degeneracy
at the other point M' as δA 6= 0 and δB = 0, this is an �order-from-disorder�
phenomenon [7], meaning that the disorder due to quantum �uctuations leads
to a long-range stability. The resulting corrections to the spin wave dispersion
are shown in Fig. 1.7.
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Chapter 2

Applications to inelastic

neutron scattering

experiments on AgNiO2

Researchers of the University of Bristol (Correletad Electron Systems Group)
have carried out inelastic neutron scattering experiments on AgNio2. A beam
of neutrons is scattered from a powder sample of AgNiO2. By looking at the
changes in energy of a neutron for a given change in momentum, one can have
a pro�le of the energy in function of the spin excitation created. A powder is
used because of the di�culty to make large crystals. However, using a powder
gives only averages of the values on all the directions so calculations of spin wave
dispersion must ultimately be averaged over angle. These experiments motivate
to improve our model : the fact that each plane containing a triangular lattice
interacts with its neighbour is solved by adding an interlayer coupling ; the
presence of a gap in the dispersion spectrum is explained by introducing easy-
axis anisotropy.

2.1 Anisotropy

So far we have showed �gures in which the spins were represented along the plane
of the crystal. This was possible because of the symmetry of the Hamiltonian,
one global rotation of the spin space does not a�ect the energy of the crystal.
This gives a continuous degeneracy that can be lifted by applying a magnetic
�eld to the crystal, or by introducing a term along an axis. We can have :

H′ = H − h
∑
i

Szi︸ ︷︷ ︸
magnetic �eld

− D
∑
i

Szi
2

︸ ︷︷ ︸
easy-axis anisotropy

(2.1)
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The introduction of the easy-axis anisotropy term will change the value in the
matrix and of the corrections as follow :

Ak = 2J1S

(
1 +

J2

J1
+ cos kx +

J2

J1
cos
√

3ky

)
+ 2DS (2.2)

Bk = 4J1S cos
√

3ky
2

(
cos

kx
2

+
J2

J1
cos

3kx
2

)
(2.3)

ωk =
√
A2
k −B2

k (2.4)

δAk = 2J1
2
N

∑
k′

Ãk′ − ω̃k′
2ω̃k′

F ′ (k, k′) +
B̃2
k′

2ω̃k′
(2.5)

F ′ (k, k′) = (1− cos kx) (1− cos k′x) +
J2

J1

(
1− cos

√
3ky
)(

1− cos
√

3k′y
)

− 2
(

1 +
J2

J1

)
− 2D
J1

δBk = 2J1
2
N

∑
k′

Ãk′ − ω̃k′
2ω̃k′

B̃k −
B̃k′

2ω̃k′
G (k, k′) (2.6)

G (k, k′) = cos
√

3ky + kx
2

cos

√
3k′y + k′x

2
+ cos

√
3ky − kx

2
cos

√
3k′y − k′x

2

+
J2

J1

(
cos
√

3ky + 3kx
2

cos

√
3k′y + 3k′x

2

+ cos
√

3ky − 3kx
2

cos

√
3k′y − 3k′x

2

)

We have just seen that the degeneracy of the ground state is lifted by the
1/S expansion, allowing an ordered phase. We are now interested in adding an
anisotropic term in order to explain the presence of gap in the experimental
spectrum. The spectra found experimentally show the impossibility to have a
dispersion under the minimal value ∆ = 1.78 meV. This raises the question
of knowing which one of the points between the soft point and the ordering
vector is the lowest in energy when adding easy-axis anisotropy. If it is not
the ordering vector, we would be in presence of a new phenomenon which was
not expected. It is then interesting to plot the shift of the two points we are
studying in function of the value of the D term in the Hamiltonian. The Fig. 2.1
shows that the e�ects are di�erent, for the soft point M' it acts linearly ∆ =
δAM ′ + 2DS whereas it is in square root for the ordering vector point ∆ =
(AM +BM + δAM + δBM + 2DS)1/2

√
2DS. Moreover, we can see that for

D > 0.07 meV the soft point M' becomes the lowest in energy, this being
de�nitive since the asymptotic limit of both plots is the same : ∆ −→ 2DS.

We can now adjust the value of D to �t with experimental data and plot the
dispersion with these parameters. This is shown in Fig. 2.2.
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Figure 2.1: Evolution of the energy of a spin wave with wave vector being at the
soft point M' (blue line) and at an ordering vector M (green line) in function of
the value of D.

Figure 2.2: Pro�le of the dispersion with easy-axis anisotropy term for the LSW
model (dashed line) and with the 1/S expansion (solid line) with J1 = 1.7 meV,
J2/J1 = 0.25, D = 0.654 meV so that the minimal gap is 1.78 meV for LSW+1/S
model.
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2.2 Interlayer coupling

Fine structures in the experimental spectra suggest the interlayer coupling to
be not as important J1 or J2, but it must be taken into account. Now we have
to consider a di�erent unit cell, formed by four spins, one up and one down in
each plane. We have named a, b, ã, b̃ the spins on the sublattice 1, 2, 4, 3 (cf.
�g. 2.3).

Figure 2.3: Representation of the four-spin magnetic cell in the AgNiO2 crystal.
Figure from [8]

In this case, the easiest thing to do is to introduce X†k =
(
a†k, ã

†
k, b−k, b̃−k

)
and the hamiltonian is written as :

H = E0 +
∑
k

X†k


Ak Bk Ck D∗k
B∗k Ak Dk Ck
Ck D∗k Ak Bk
Dk Ck B∗k Ak

Xk +O (1/S) (2.7)

Ak = 2S
[
J1 (1 + cos kx) + J2

(
1 + cos

√
3ky
)
− Jz +D

]
(2.8)

Bk = 4SJz cos
(
kx
2

)
cos
(
kz
2

)
δk (2.9)

Ck = 4S cos

(√
3ky
2

)[
J1 cos

(
kx
2

)
+ J2 cos

(
3kx
2

)]
(2.10)

Dk = 2SJz cos
(
kz
2

)
δ2k (2.11)

δk = e−iky/2
√

3 (2.12)

To solve this we have to �nd another basis where this hamiltonian is diag-
onal. We can do so by using a matrix S transforming X into X', this matrix,
explicited further, will give us the mean values of two bosonic operators and we
can calculate the 1/S correction. At the �rst order, the dispersion relation is
given by :(

ω±
)2 = A2 +BB∗ − C2 −DD∗ ±

√
4 |AB − CD∗|2 − |B∗D∗ −BD|2

To plot the dispersion, we have changed the beginning of the plot, so that
before plotting in the (M,M',Γ) plane, we �rst plot the dispersion along the z

axis, from N
(

0, 2π√
3
, π
)
to M

(
0, 2π√

3
, 0
)
, the plot is shown in Fig 2.4. The matrix
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S turning the X basis into a basis X' where the Hamiltonian is diagonal is :

S =


w̄1 w̄2 w̄3 w̄4

ȳ1 ȳ2 ȳ3 ȳ4
x̄1 x̄2 x̄3 x̄4

z̄1 z̄2 z̄3 z̄4



wi = − (A+ ωi)
(
A2 +BB∗ − C2 −DD∗ − ω2

i

)
+ 2ABB∗ − C (B∗D∗ +BD)

yi = B∗
(
(A+ ωi)2 −BB∗ + C2

)
− 2C (A+ ωi)D +BD2

xi = C
(
A2 +BB∗ − C2 +DD∗ − ω2

i

)
−A (B∗D∗ +BD)− ωi (B∗D∗ −BD)

zi = D
(
A2 + C2 −DD∗ − ω2

i

)
+B∗2D∗ − 2AB∗C

ni = |wiw∗i + yiy
∗
i − xix∗i − ziz∗i |

x̄i =
xi√
ni

In these calculations, ω1 = ω−, ω2 = ω+, ω3 = −ω− and ω4 = −ω+. The
next step has been to check numerically the following relations between the
mean �elds. This is done by using the X' basis and using that in this basis, all
the mean �eld are zero, so the remaining �eld is created by the commutation
relation of the boson operators. We have :

m1 =
〈
a†kak

〉
=
〈
ã†kãk

〉
=
〈
b†−kb−k

〉
=
〈
b̃†−k b̃−k

〉
= |w̄3|2 + |w̄4|2 ∈ R

m2 =
〈
a†kãk

〉
=
〈
ã†kak

〉∗
=
〈
b†−k b̃−k

〉
=
〈
b̃†−kb−k

〉∗
= w̄∗3 ȳ3 + w̄∗4 ȳ4 ∈ C

m3 =
〈
a†kb
†
−k

〉
= 〈akb−k〉 =

〈
ã†k b̃
†
−k

〉
=
〈
ãk b̃−k

〉
= w̄∗1 x̄1 + w̄∗2 x̄2 ∈ R

m4 =
〈
a†k b̃
†
−k

〉
= 〈ãkb−k〉 =

〈
ã†kb
†
−k

〉∗
=
〈
ak b̃−k

〉∗
= ȳ∗1 x̄1 + ȳ∗2 x̄2 ∈ C

We can then write the 1/S corrections to the terms of the matrix :

δAk =
4
N

∑
k′

m1 (k′) (F (k, k′) + 2Jz)

− (m2(k′)m∗2(k′))
Bk′ +B∗k′

2S
− m∗4(k′)D∗k′ +m4(k′)Dk′

S

F (k, k′) = 2J1 (1− cos kx) (1− cos k′x) + 2J2

(
1− cos

√
3ky
)(

1− cos
√

3k′y
)

− 4 (J1 + J2) − 4D

δBk =
Jz
2

4
N

∑
k′

m2(k′)
Bk−k′ +B∗k−k′

JzS
− 2m1(k′)

Bk +B∗k
JzS
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δCk = 2J1
4
N

∑
k′

m1(k′)
Ck

2J1S
+m3(k′)G (k, k′)

G (k, k′) = cos
√

3ky + kx
2

cos

√
3k′y + k′x

2
+ cos

√
3ky − kx

2
cos

√
3k′y − k′x

2

+
J2

J1

(
cos
√

3ky + 3kx
2

cos

√
3k′y + 3k′x

2

+ cos
√

3ky − 3kx
2

cos

√
3k′y − 3k′x

2

)

δDk =
Jz
2

4
N

∑
k′

m∗4(k′)
Dk−k′ +D∗k−k′

JzS
− 4m1(k′)

Dk

JzS

We can �nally plot the dispersion with all these parameters, the plot is shown in
Fig. 2.4. We are interested to see how evolves the dispersion around its minimal

Figure 2.4: Plot of the dispersion with interlayer coupling and 1/S correction.
Red is the ω−, blue the ω+, the solid lines show the LSW dispersion, the dots
are the corrected terms.

value to compare with experimental data. The plot shows no dispersion around
M' so we also plot the dispersion around this point along the z-direction, from
M' to N ′ = M ′ + 2π~z to see how the minimum of the energy evolves around
this point (cf Fig 2.5). The Fig. 2.5 does not show any signi�cative change
around this point, the cause being that this change in the dispersion is in order
of magnitude (Jz/J1)2.
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Figure 2.5: Pro�le of the dispersion ω+ around M' and on the z-axis. Solid line
for the LSW model, dots for the 1/S correction

19



Conclusion

Figure 2.6: Experimental data of the energy of the scattered neutron in fonction
of the modulus of the change in the momentum obtained by the Correlated
Electron Systems Group.

The aim of this internship was to develop a model that could explain the
experimental data Fig. 2.6. The M' arrow show the minimum of energy, the
modulus corresponding to points as M'. The second minimum is obtained for
N' since a larger distance in the real space means a smaller one in the reciprocal
space, then N' appears before any other signi�cative point. The D parameter
is given by the minimum of energy (the phonon branch is not considered). The
fact that the pro�le is not �at from M' to N' would indicate that the parameter
Jz should be larger. However, a larger Jz leads to changes in the pro�le of the
dispersion, shifting the minimum away from M'. The next work to do is �tting
the experimental with this model to see if it is good enough to describe the
AgNiO2 crystal by playing with the value of the parameters, or if this model
should be upgraded to a model also considering the itinerant electrons of the
Ni ions from the honeycomb lattice.

In this report, we have introduced a quantum spin wave theory in order to
explain as simply as possible the spin excitations of a crystal. This consisted
�rstly in repeating calculations previously carried out by A. Chubukov and T.
Jolicoeur in [2]. This gave a precise comprehension of the theory and allowed
us to upgrade this approach to take into account both easy-axis anisotropy and
interlayer coupling, which was performed by the end of the internship. However
the adaptation of this model to experimental data arises new questions which
should be answered within few weeks.

I acknowledge useful discussion with N. Shannon, R. Coldea, L. Seabra and
A. Chubukov.
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Appendix A

Canonical transformation and

application to CAF phase

This part will show how the dispersion is calculated in the case of antiferromag-
netism and simpli�ed by the ω2 = A2−B2 formula. We will focus on the square
(or cubic) lattice case and apply the same method to other lattices; consequently
we start the calculations with :

H = −NzJ
2

S2 + zJS
∑
~q

[
a†~qa~q + b†−~qb−~q + γ~q

(
a~qb−~q + a†~qb

†
−~q

)]
︸ ︷︷ ︸

HLSW

We can introduce a change in the bosonic operators by introducing α and β
operators given by the equations [2]:

a~q = uqα~q − vqβ†−~q
a†~q = uqα

†
~q − vqβ−~q

b~q = uqβ~q − vqα†−~q
b†~q = uqβ

†
~q − vqα−~q

with conditions
[
αi, α

†
j

]
= δij[

βi, β
†
j

]
= δij

u2
q − v2

q = 1

This change of the bosonic operators leads to a writing of HLSW :

HLSW = zJS
∑
~q

[
2
(
v2
q − γ~quqvq

)
+

(
u2
q + v2

q − 2γ~quqvq
) (
α†~qα~q + β†−~qβ−~q

)
+

(
γ~q
(
u2
q + v2

q

)
− 2uqvq

) (
α~qβ−~q + α†~qβ

†
−~q

)]
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We want the last term to vanish, this gives a condition upon uq = cosh θ
and vq = sinh θ. We have :

tanh 2θ =
Bq
Aq

= γ~q

u2
q =

1
2

1 +
1√

1− γ2
~q


v2
q =

1
2

 1√
1− γ2

~q

− 1


HLSW = zJS

∑
~q

√
1− γ2

~q − 1 +
∑
~q

zJS
√

1− γ2
~q︸ ︷︷ ︸

ω(~q)

(
α†~qα~q + β†−~qβ−~q

)

We hence see that the formula ω2 = A2 −B2 is valid in this case, and since
we have performed a very general change of the coordinates, this result does not
depend on the values of A and B (except of course if A2 < B2).

A.1 Adding magnetic �eld

In the section 2.1, one of the option to lift the continous degeneracy of the
rotation of the spins is to add a magnetic �eld h, this leads to a change :

ω  ω± = ω ± h

The calculations give :

H′ = H − h
∑
i

Szi︸ ︷︷ ︸
magnetic �eld

= E0 +
∑
k

(
a†k, bk

)( Ak − h Bk
Bk Ak + h

)(
ak
b†k

)
We use the canonical transformation :

a~q = uqα~q − vqβ†−~q
a†~q = uqα

†
~q − vqβ−~q

b~q = uqβ~q − vqα†−~q
b†~q = uqβ

†
~q − vqα−~q

u2
q =

1
2

1 +
Aq√

A2
q −B2

q


v2
q =

1
2

 Aq√
A2
q −B2

q

− 1
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The calculations then give :

H′ = E0 +
∑
q

(
α†q, β−q

) √
A2
q −B2

q + h 0

0
√
A2
q −B2

q − h

( αq
β†−q

)

A.2 Colinear antiferromagnet on a square lattice

Figure A.1: Colinear antiferromagnetic lattice

This state is observed only with the J1 − J2 model and for certain values of
the ratio of the two coupling contants, more precisely we should have :

J2 >
|J1|
2

If this condition is realised we can write our Hamiltonian as in the previous
section, introducing A and B. We obtain :

A = 2S (2J2 + J1 cos qx)
B = 2S cos qy (J1 + J2 cos qx)(ω~q

4S

)2

= J2
2

(
1− cos2 qx cos2 qy

)
+ J1J2 cos qx

(
1− cos2 qy

)
+ . . .

+
J2

1

4
(
cos2 qx − cos2 qy

)
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Appendix B

Leading quantum corrections

to the spin wave dispersion of

a square lattice NAF -

Comparison of methods

First method

Expanding the calculation one degree further will show that the Hamiltonian
is :

H = E0 + HLSW − J
∑
〈ij〉1

a†i b
†
jbjai +

1
4

(
a†iaiaibj + b†jbjbjai + h.c.

)
︸ ︷︷ ︸

H1

+ . . .

H1 =
2zJ
N

′∑
1234

(
a†1b
†
2b3a4γ3−2+

+
1
4

[
a†1a−2a3b4γ4 + a−1b

†
2b3b4γ−2+3+4 + a†1a

†
2a3b

†
−4γ−4 + a†1b

†
2b
†
−3b4γ2+3−4

])

We have used the abbreviations a1 = ak1 and γ3−2 = γ (k3 − k2) and the
prime means that the sum runs on every quadruplet of vectors of reciprocal space
with respect to the condition k1 + k2 = k3 + k4 + G where G is a reciprocal
lattice vector. We now have to perform the same canonical transformation we
have made for the linear spin wave term to put the Hamiltonian in term of α†α
and β†β. We will obtain 16 terms for each four-bosons term, terms we have to
write under the normal ordering form α†β†βα. This writing will lead to :
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H1 =
∑
k,k′

(
a†~k
, b ~−k

)(
Akk′ Bkk′

Bkk′ Akk′

)(
a~k
b†
−~k

)

+
1
4

′∑
1234

u1u2u3u4

[
α†1α

†
2α3α4 B

a + β†−3β
†
−4β−1β−2 B

b + 4α†1β
†
−4β−2α3 B

c

+2
(

2α†1β−2α3α4 B
d + 2β†−4β−1β−2α3 B

e + α†1α
†
2β
†
−3β

†
−4 B

f + h.c.
)]

Where :

∑
k′

Akk′ =
∑
k′

(1− εk′) εk∑
k′

Bkk′ = 0

Ba = γ1−4x1x4 + γ1−3x1x3 + γ2−4x2x4 + γ2−3x2x3

−1
2

(γ1x1 + γ2x2 + γ3x3 + γ4x4 + γ2−3−4x2x3x4+

+γ1−3−4x1x3x4 + γ4−2−1x1x2x4 + γ3−2−1x1x2x3)

Bb = γ2−4x1x3 + γ1−4x2x3 + γ1−3x2x4 + γ2−3x1x4

−1
2

(γ2x1x3x4 + γ1x2x3x4 + γ3x1x2x4 + γ4x1x2x3+

+γ2−3−4x1 + γ1−3−4x2 + γ4−1−2x3 + γ3−1−2x4)

Bc = γ2−4 + γ1−3x1x2x3x4 + γ1−4x1x2 + γ2−3x3x4

−1
2

(γ2x4 + γ1x1x2x4 + γ2−3−4x3 + γ1−3−4x1x2x3+

+γ4x2 + γ3x2x3x4 + γ4−1−2x1 + γ3−2−1x1x3x4)
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Bd = −γ2−4x4 − γ1−4x1x2x4 − γ2−3x3 − γ1−3x1x2x3

+
1
2

(γ2 + γ1x1x2 + γ3x2x3 + γ4x2x4 + γ2−3−4x3x4

+γ1−3−4x1x2x3x4 + γ3−2−1x1x3 + γ4−2−1x1x4)

Be = −γ2−4x1 − γ2−3x1x3x4 − γ1−4x2 − γ1−3x2x3x4

+
1
2

(γ2x1x4 + γ1x2x4 + γ4x1x2 + γ3x1x2x3x4

+γ2−3−4x1x3 + γ1−3−4x2x3 + γ4−2−1 + γ3−2−1x3x4)

Bf = γ2−4x2x3 + γ2−3x2x4 + γ1−3x1x4 + γ1−4x1x3

−1
2

(γ2x2x3x4 + γ3−2−1x1x2x4 + γ4x3 + γ1x1x3x4

+γ2−3−4x2 + γ1−3−4x1 + γ4−1−2x1x2x3 + γ3x4)

We have noted xk = vk

uk
, εk = ωk

zJS and symmetrized all the expressions in
function of identical bosons. The sum over A and B are simpli�ed using the
relations between uk, vk and γk. The conclusion of these calculations is that we
now have :

H =

E0+LSW︷ ︸︸ ︷
JSz

∑
k

(εk − 1) +
∑
k

ωk

(
α†kαk + β†kβk

)
+

1
2S

2
N

∑
k

(1− εk)︸ ︷︷ ︸
A'0.158

∑
k

ωk

(
α†kαk + β†kβk

)

+ four-bosons term + . . .

Second method

What we have writen for the Hamiltonian in term of a†1, b
†
2, a3 and b4 is still true.

Now the aim is to use a mean-�eld value of two bosonic operators to contract
it so as to have two-bosons terms only.

Mean values of two bosonic operators

In the case of ferromagnet one technique is to add a magnetic �eld term to the
Hamiltonian, calculate the partition function then the free energy and �nally
the magnetization per site. This gives :
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H = J
∑
〈ij〉1

~Si · ~Sj + h
∑
i

Szi

= −zN
2
JS2 −NhS +

∑
q

JSz (1− γq)︸ ︷︷ ︸
ωq

+h

 a†qaq
Z = Tr

(
eH/kbT

)
= e

N( z
2 JS+h)S

kBT

∏
q

∑
n

e
−n(ωq+h)

kBT

︸ ︷︷ ︸
=
(
1−e(ωq+h)/kBT

)−1

F = −kBT logZ = −NzJS
2

2
−NhS + kBT

∑
q

log
(

1− e−(ωq+h)/kBT
)

m = − 1
N

∂F

∂h

∣∣∣∣
h=0

= S − 1
N

∑
q

nB (ωq) where nB (x) =
1

ex/kBT − 1

m = S −
〈
a†qaq

〉

Conclusion :
〈
a†qaq′

〉
= δqq′nB (ωq) −−−→

T→0
0

We can use a similar technique to calculate it for the antiferromagnet. The
fact that the spins point in opposite direction is solved by considering an hy-
pothetic �eld pointing upwards for A sites, downwards for B sites. The other
di�erence is that the Hamiltonian is now diagonal in α and β instead of a and
b so the mean values are simplest for α and β (in fact the same calculations can
be reproduced so we have the same value, the bosonic occupation number, as
expected). Consequently, we have :

〈
α†qαq′

〉
=

〈
β†qβq′

〉
= δqq′nB (ωq)〈

β†qαq′
〉

=
〈
α†qβq′

〉
= 0

〈
a†qaq′

〉
=

〈
b†qbq′

〉
= δqq′

((
u2
q + v2

q

)
nB (ωq) + v2

q

) T→0= δqq′
Aq − ωq

2ωq〈
a†qb
†
−q′

〉
= 〈aqb−q′〉 = −δqq′uqvq (2nB (ωq) + 1) T→0= −δqq′

Bq
2ωq

We now use these values of the means in the four-bosons terms of the Hamil-
tonian. For example :∑
1234

a†1b
†
2b3a4 γ3−2 δ1+2,3+4 '

∑
qq′

〈
b†q′bq′

〉
a†qaq +

〈
a†q′aq′

〉
b†qbq

+
〈
a†q′b

†
−q′

〉
b−qaqγq−q′ + 〈aqb−q′〉 a†qb

†
−qγq−q′
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Doing the same for all the four-bosons terms, and for zero temperature leads
to :

H = EO + HLSW − 2zJ
N

∑
q,q′

(
a†~q, b ~−q

)(
Aqq′ Bqq′

Bqq′ Aqq′

)(
a~q
b†−~q

)

where
∑
q′

Aqq′ =
∑
q′

v2
q′ − uq′vq′γq′ =

−NA
4∑

q′

Bqq′ =
∑
q′

γqv
2
q′ − γq−q′uq′vq′ =

−NA
4

γq

A =
A

N

∑
k (1− εk)

We can now conclude and check that the two methods give the same result :

H = E0 + HLSW +
JSz

2S
A
∑
q

(
a†~q, b ~−q

)( 1 γq
γq 1

)(
a~q
b†−~q

)
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