
Weak Antilocalization of 3DTI 
Surface States in the Presence of 

Spin-orbit Impurities 

P. Adroguer1, W.E. Liu2, D. Culcer2, and E. M. Hankiewicz1 

1 Institute for theoretical physics, Universität Würzburg
2 University of New South Wales

DPG Frühjahrstagung 2015, Berlin



Outline

• Introduction to transport in 3D topological insulators

• 3DTI surface states and transport

• Regime of coherent transport (weak localization)

• Effects of spin-orbit impurities in 3DTI

• Elastic scattering time

• Diffusion constant

• Quantum correction to conductivity

• Perspectives



• 3DTI : insulator with odd number of topologically 
protected surface states (Bi2Te3 , Bi2Se3, strained HgTe... )

• Strong spin-orbit coupling : Spin-momentum locking

• Dirac fermions Hamiltonian : 

3D Topological insulators surface states

H = �vF (�k × �σ)z

3.1. 2 dimensional topological insulators : HgTe quantum wells
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Figure 2 | Transverse-momentum kz dependence of Dirac bands near �. a, The energy dispersion data along the �–M cut, measured with the photon

energy of 21 eV (corresponding to 0.3 k-space length along �–Z � kz), 19 eV (�) and 31 eV (−0.4 k-space length along �–Z of the bulk three-dimensional �

BZ) are shown. Although the bands below −0.4 eV binding energy show strong kz dependence, the linearly dispersive Dirac-like bands and the U-shaped

broad feature show weaker kz dispersion. The Dirac point is observed to lie inside the bulk bandgap. A careful look at the individual curves reveals some kz
dependence of the U-shaped continuum (see b for details). b, The energy distribution curves obtained from the normal-emission spectra measured using

15–31 eV photon energies reveal two dispersive bulk bands below −0.3 eV (blue dotted lines). This is in addition to the two non-dispersive peaks from the

Dirac-cone bands inside the gap. The Dirac band intensity is strongly modulated by the photon energy changes due to the matrix-element effects (which is

also observed in BiSb; ref. 5). c, A k-space map of locations in the bulk three-dimensional BZ scanned by the detector at different photon energies over a

theta (θ) range of ±30
◦
. This map (kz, ky , Ephoton) was used to explore the kz dependence of the observed bands.

at particular high-symmetry points—the Kramers points on the

surface BZ. In our calculations, the SSs (red dotted lines) are doubly

degenerate only at � (Fig. 1f). This is generally true for all known

spin–orbit-coupled material surfaces such as gold
25,26

or Bi1−xSbx
(ref. 5). In Bi2Se3, the SSs emerge from the bulk continuum, cross

each other at �, pass through the Fermi level (EF) and eventually

merge with the bulk conduction-band continuum, ensuring that

at least one continuous band-thread traverses the bulk bandgap

between a pair of Kramers points. Our calculated result shows that

no surface band crosses the Fermi level if SOC is not included in

the calculation, and only with the inclusion of the realistic values

of SOC (based on atomic Bi) does the calculated spectrum show

singly degenerate gapless surface bands that are guaranteed to cross

the Fermi level. The calculated band topology with realistic SOC

leads to a single ring-like surface FS, which is singly degenerate

so long as the chemical potential is inside the bulk bandgap. This

topology is consistent with the Z2 = −1 class in the Fu–Kane–Mele

classification scheme
7
.

A global agreement between the experimental band structure

(Fig. 1a–c) and our theoretical calculation (Fig. 1f) is obtained by

considering a rigid shift of the chemical potential by about 200meV

with respect to our calculated band structure (Fig. 1f) of the formula

compound Bi2Se3. The experimental sign of this rigid shift (the

raised chemical potential) corresponds to an electron doping of the

Bi2Se3 insulating formulamatrix (see Supplementary Information).

This is consistent with the fact that naturally grown Bi2Se3

semiconductor used in our experiment is n-type, as independently

confirmed by our transport measurements. The natural doping of

this material, in fact, comes as an advantage in determining the

topological class of the corresponding undoped insulator matrix,

because we would like to image the SSs not only below the Fermi

level but also above it, to examine the way surface bands connect to

the bulk conduction band across the gap. A unique determination

of the surface band topology of purely insulating Bi1−xSbx (refs 5,

6) was clarified only on doping with a foreign element, Te. In our

experimental data on Bi2Se3, we observe a V-shaped pure SS band

to be dispersing towards EF, which is in good agreement with our

calculations.More remarkably, the experimental band velocities are

also close to our calculated values. By comparison with calculations

combined with a general set of arguments presented above, this

V-shaped band is singly degenerate. Inside this ‘V’ band, an

electron-pocket-like U-shaped continuum is observed to be present

near the Fermi level. This filled U-shaped broad feature is in close

correspondence to the bottom part of the calculated conduction-

band continuum (Fig. 1f). Considering the n-type character of the

naturally occurring Bi2Se3 and by correspondence to our band

calculation, we assign the broad feature to correspond roughly to

the bottom of the conduction band.

To systematically investigate the nature of all the band features

imaged in our data, we have carried out a detailed photon-energy-

dependence study, of which selected data sets are presented in

Fig. 2a,b. A modulation of incident photon energy enables us to

probe the kz dependence of the bands sampled in an ARPES

study (Fig. 2c), allowing for a way to distinguish surface from bulk

contributions to a particular photoemission signal
5
. Our photon-

energy study did not indicate a strong kz dispersion of the lowest-

lying energy bands on the ‘U’, although the full continuum does

have some dispersion (Fig. 2). Some variation of the quasiparticle

intensity near EF is, however, observed owing to the variation of

the electron–photon matrix element. In light of the kz -dependence
study (Fig. 2b), if the features above −0.15 eV were purely due

to the bulk, we would expect to observe dispersion as kz moved

away from the �-point. The lack of strong dispersion yet close

one-to-one correspondence to the calculated bulk band structure

suggests that the inner electron pocket continuum features are

probably a mixture of surface-projected conduction-band states,

which also includes some band-bending effects near the surface and

the full continuum of bulk conduction-band states sampled from a

few layers beneath the surface. Similar behaviour is also observed in

the ARPES study of other semiconductors
27
. In our kz -dependent

study of the bands (Fig. 2b) we also observe two bands dispersing in

kz that have energies below −0.3 eV (blue dotted bands), reflecting

the bulk valence bands, in addition to two other non-dispersive

features associated with the two sides of the pure SS Dirac bands.

The red curve is measured right at the �-point, which suggests that

the Dirac point lies inside the bulk bandgap. Taking the bottom of

the ‘U’ band as the bulk conduction-band minimum, we estimate

that a bandgap of about 0.3 eV is realized in the bulk of the undoped

material. Our ARPES estimated bandgap is in good agreement with

the value deduced from bulk physical measurements
23

and from
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locked due to Z2 topology. This is most clearly seen in the spin-
resolved spectra (Iy

",#; Fig. 1g), which are calculated from Py accord-
ing to Iy

"5 Itot(11Py)/2 and Iy
#5 Itot(12 Py)/2, where Itot is the

spin-averaged intensity. To extract the spin polarization vectors of
the forward (1kx) and backward (2kx) moving electrons, we
performed a standard numerical fit (Supplementary Informa-
tion)21. The fit results yield 100(615)% polarized (Fig. 1h) spins that
point along the (k3 z) direction, which is consistent with its topo-
logical spin–orbit coupling origin14,21. Spin-momentum locking is
the key to topological order in a topological insulator which cannot
be demonstrated without spin sensitive detection. Therefore the
existence of the topological insulator state was not established in
previous work on Bi2X3. Our combined observations of a spin–orbit
origin linear dispersion relation and a one-to-one locking of
momentum and spin directions allow us to conclude that the surface
electrons of Bi2X3 (X5Se, Te) are helical Dirac fermions of Z2

topological-order origin (Fig. 1).
To experimentally access these helical Dirac fermions for research-

device applications, the electronic structuremust be in the topological
transport regime where there is zero charge fermion density7–9.
This regime occurs when EF lies in between the bulk valence band
maximum (VBM) and the bulk conduction band minimum (CBM),
and exactly at the surface or edge Dirac point, which should in turn lie
at a Kramers time-reversal invariant momentum3,4. This is clearly not
the case in either Bi2Te3, Bi2(Sn)Te3, Bi2Se3 or graphene. Although
pure Bi2X3 are expected to be undoped semiconductors20,22,23,
nominally stoichiometric samples are well known to be n- and p-type
semiconductors owing to excess carriers introduced via Se or Te site
defects, respectively16,17. To compensate for the unwanted defect
dopants, trace amounts of carriers of the opposite sign must be added
into the naturally occurring material, which may be easier to achieve
in Bi2Se3 than in Bi2Te3 because the former has a much larger
bandgap15,24 (around 0.35 eV (ref. 25) compared to 0.18 eV (ref. 26),
respectively). To lower the EF of Bi2Se3 into the bulk bandgap, we

substituted trace amounts of Ca21 for Bi31 in as-grown Bi2Se3, where
Ca has been previously shown16 to act as a hole donor by scanning
tunnelling microscopy and thermoelectric transport studies16.
Figure 2a shows that as the Ca concentration increases from 0% to
0.5%, the low temperature resistivity sharply peaks at 0.25%, which
suggests that the system undergoes a metal to insulator to metal trans-
ition. The resistivity peak occurs at a Ca concentration where a change
in signof theHall carrier density also is observed (Fig. 2b),which shows
that formeasuredCa concentrations below and above 0.25%, electrical
conduction is supported by electron and hole carriers, respectively.

We performed systematic time-dependent ARPES measurements
to study the electronic structure evolution of Bi22dCadSe3 as a func-
tion of Ca doping in order to gain insight into the trends observed in
transport (Fig. 2a and b). Early time ARPES energy dispersion maps
taken through the !CC point of the (111) surface Brillouin zone are
displayed in Fig. 2c–h for several Ca doping levels. In the as-grown
(d5 0) Bi2Se3 samples, a single surface Dirac cone is observed with EF
lying nearly 0.3 eV above the Dirac node forming an electron Fermi
surface. We also observe that EF intersects the electron-like bulk
conduction band. When a 0.25% concentration of Ca is introduced,
EF is dramatically lowered to lie near the Dirac node (Fig. 2d), which
is consistent with Ca acting as a highly effective hole donor. Because
the bulk CBM lies at a binding energy of approximately20.1 eV for
d5 0 (Fig. 2c), a 0.3 eV shift in EF between d5 0 and d5 0.0025
suggests that for d5 0.0025, EF is located 0.2 eV below the CBM.
This is consistent with EF being in the bulk bandgap, because the
indirect energy gap between the CBM and the VBM is known from
both tunnelling24 and optical25 data and theory22 to be nearly 0.35 eV.

As the Ca concentration is increased further, the position of EF
continues a downward trend such that by d5 0.01, it is located
clearly below the Dirac node (Fig. 2) and intersects the hole-like bulk
valence band. The systematic lowering of EF with increasing d in
Bi22dCadSe3 observed in early time ARPES measurements
(Fig. 2i–k), which reflect the electronic structure of the sample bulk,
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Figure 1 | Detection of spin-momentum locking of spin-helical Dirac
electrons in Bi2Se3 and Bi2Te3 using spin-resolved ARPES. a, b, ARPES
intensity map at EF of the (111) surface of tuned stoichiometric Bi22dCadSe3
(a; see text) and of Bi2Te3 (b). Red arrows denote the direction of spin
projection around the Fermi surface. c, d, ARPES dispersion of tuned
Bi22dCadSe3 (c) and Bi2Te3 (d) along the kx cut. The dotted red lines are
guides to the eye. The shaded regions in c and d are our projections of the
bulk bands of pure Bi2Se3 and Bi2Te3, respectively, onto the (111) surface.
e, Measured y component of spin-polarization along the !CC{ !MM direction at
EB5220meV, which only cuts through the surface states. Inset, schematic
of the cut direction. f, Measured x (red triangles) and z (black circles)
components of spin-polarization along the !CC{ !MM direction at

EB5220meV. Error bars in e and f denote the standard deviation of Px,y,z
where typical detector counts reach 53 105; solid lines are numerical fits21.
g, Spin-resolved spectra obtained from the y component spin polarization
data. The non-Lorentzian lineshape of the Iy

" and Iy
# curves and their non-

exact merger at large |kx | is due to the time evolution of the surface band
dispersion, which is the dominant source of statistical uncertainty. a.u.,
arbitrary units. h, Fitted values of the spin polarization vector P (Sx,Sy,Sz) are
(sin90ucos295u, sin90usin295u, cos90u) for electrons with 1kx and
(sin86ucos85u, sin86usin85u, cos86u) for electrons with 2kx, which
demonstrates the topological helicity of the spin-Dirac cone. The angular
uncertainties are of the order of 610u and the magnitude uncertainty is of
the order of 60.15.
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locked due to Z2 topology. This is most clearly seen in the spin-
resolved spectra (Iy

",#; Fig. 1g), which are calculated from Py accord-
ing to Iy

"5 Itot(11Py)/2 and Iy
#5 Itot(12 Py)/2, where Itot is the

spin-averaged intensity. To extract the spin polarization vectors of
the forward (1kx) and backward (2kx) moving electrons, we
performed a standard numerical fit (Supplementary Informa-
tion)21. The fit results yield 100(615)% polarized (Fig. 1h) spins that
point along the (k3 z) direction, which is consistent with its topo-
logical spin–orbit coupling origin14,21. Spin-momentum locking is
the key to topological order in a topological insulator which cannot
be demonstrated without spin sensitive detection. Therefore the
existence of the topological insulator state was not established in
previous work on Bi2X3. Our combined observations of a spin–orbit
origin linear dispersion relation and a one-to-one locking of
momentum and spin directions allow us to conclude that the surface
electrons of Bi2X3 (X5Se, Te) are helical Dirac fermions of Z2

topological-order origin (Fig. 1).
To experimentally access these helical Dirac fermions for research-

device applications, the electronic structuremust be in the topological
transport regime where there is zero charge fermion density7–9.
This regime occurs when EF lies in between the bulk valence band
maximum (VBM) and the bulk conduction band minimum (CBM),
and exactly at the surface or edge Dirac point, which should in turn lie
at a Kramers time-reversal invariant momentum3,4. This is clearly not
the case in either Bi2Te3, Bi2(Sn)Te3, Bi2Se3 or graphene. Although
pure Bi2X3 are expected to be undoped semiconductors20,22,23,
nominally stoichiometric samples are well known to be n- and p-type
semiconductors owing to excess carriers introduced via Se or Te site
defects, respectively16,17. To compensate for the unwanted defect
dopants, trace amounts of carriers of the opposite sign must be added
into the naturally occurring material, which may be easier to achieve
in Bi2Se3 than in Bi2Te3 because the former has a much larger
bandgap15,24 (around 0.35 eV (ref. 25) compared to 0.18 eV (ref. 26),
respectively). To lower the EF of Bi2Se3 into the bulk bandgap, we

substituted trace amounts of Ca21 for Bi31 in as-grown Bi2Se3, where
Ca has been previously shown16 to act as a hole donor by scanning
tunnelling microscopy and thermoelectric transport studies16.
Figure 2a shows that as the Ca concentration increases from 0% to
0.5%, the low temperature resistivity sharply peaks at 0.25%, which
suggests that the system undergoes a metal to insulator to metal trans-
ition. The resistivity peak occurs at a Ca concentration where a change
in signof theHall carrier density also is observed (Fig. 2b),which shows
that formeasuredCa concentrations below and above 0.25%, electrical
conduction is supported by electron and hole carriers, respectively.

We performed systematic time-dependent ARPES measurements
to study the electronic structure evolution of Bi22dCadSe3 as a func-
tion of Ca doping in order to gain insight into the trends observed in
transport (Fig. 2a and b). Early time ARPES energy dispersion maps
taken through the !CC point of the (111) surface Brillouin zone are
displayed in Fig. 2c–h for several Ca doping levels. In the as-grown
(d5 0) Bi2Se3 samples, a single surface Dirac cone is observed with EF
lying nearly 0.3 eV above the Dirac node forming an electron Fermi
surface. We also observe that EF intersects the electron-like bulk
conduction band. When a 0.25% concentration of Ca is introduced,
EF is dramatically lowered to lie near the Dirac node (Fig. 2d), which
is consistent with Ca acting as a highly effective hole donor. Because
the bulk CBM lies at a binding energy of approximately20.1 eV for
d5 0 (Fig. 2c), a 0.3 eV shift in EF between d5 0 and d5 0.0025
suggests that for d5 0.0025, EF is located 0.2 eV below the CBM.
This is consistent with EF being in the bulk bandgap, because the
indirect energy gap between the CBM and the VBM is known from
both tunnelling24 and optical25 data and theory22 to be nearly 0.35 eV.

As the Ca concentration is increased further, the position of EF
continues a downward trend such that by d5 0.01, it is located
clearly below the Dirac node (Fig. 2) and intersects the hole-like bulk
valence band. The systematic lowering of EF with increasing d in
Bi22dCadSe3 observed in early time ARPES measurements
(Fig. 2i–k), which reflect the electronic structure of the sample bulk,
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Figure 1 | Detection of spin-momentum locking of spin-helical Dirac
electrons in Bi2Se3 and Bi2Te3 using spin-resolved ARPES. a, b, ARPES
intensity map at EF of the (111) surface of tuned stoichiometric Bi22dCadSe3
(a; see text) and of Bi2Te3 (b). Red arrows denote the direction of spin
projection around the Fermi surface. c, d, ARPES dispersion of tuned
Bi22dCadSe3 (c) and Bi2Te3 (d) along the kx cut. The dotted red lines are
guides to the eye. The shaded regions in c and d are our projections of the
bulk bands of pure Bi2Se3 and Bi2Te3, respectively, onto the (111) surface.
e, Measured y component of spin-polarization along the !CC{ !MM direction at
EB5220meV, which only cuts through the surface states. Inset, schematic
of the cut direction. f, Measured x (red triangles) and z (black circles)
components of spin-polarization along the !CC{ !MM direction at

EB5220meV. Error bars in e and f denote the standard deviation of Px,y,z
where typical detector counts reach 53 105; solid lines are numerical fits21.
g, Spin-resolved spectra obtained from the y component spin polarization
data. The non-Lorentzian lineshape of the Iy

" and Iy
# curves and their non-

exact merger at large |kx | is due to the time evolution of the surface band
dispersion, which is the dominant source of statistical uncertainty. a.u.,
arbitrary units. h, Fitted values of the spin polarization vector P (Sx,Sy,Sz) are
(sin90ucos295u, sin90usin295u, cos90u) for electrons with 1kx and
(sin86ucos85u, sin86usin85u, cos86u) for electrons with 2kx, which
demonstrates the topological helicity of the spin-Dirac cone. The angular
uncertainties are of the order of 610u and the magnitude uncertainty is of
the order of 60.15.
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locked due to Z2 topology. This is most clearly seen in the spin-
resolved spectra (Iy

",#; Fig. 1g), which are calculated from Py accord-
ing to Iy

"5 Itot(11Py)/2 and Iy
#5 Itot(12 Py)/2, where Itot is the

spin-averaged intensity. To extract the spin polarization vectors of
the forward (1kx) and backward (2kx) moving electrons, we
performed a standard numerical fit (Supplementary Informa-
tion)21. The fit results yield 100(615)% polarized (Fig. 1h) spins that
point along the (k3 z) direction, which is consistent with its topo-
logical spin–orbit coupling origin14,21. Spin-momentum locking is
the key to topological order in a topological insulator which cannot
be demonstrated without spin sensitive detection. Therefore the
existence of the topological insulator state was not established in
previous work on Bi2X3. Our combined observations of a spin–orbit
origin linear dispersion relation and a one-to-one locking of
momentum and spin directions allow us to conclude that the surface
electrons of Bi2X3 (X5Se, Te) are helical Dirac fermions of Z2

topological-order origin (Fig. 1).
To experimentally access these helical Dirac fermions for research-

device applications, the electronic structuremust be in the topological
transport regime where there is zero charge fermion density7–9.
This regime occurs when EF lies in between the bulk valence band
maximum (VBM) and the bulk conduction band minimum (CBM),
and exactly at the surface or edge Dirac point, which should in turn lie
at a Kramers time-reversal invariant momentum3,4. This is clearly not
the case in either Bi2Te3, Bi2(Sn)Te3, Bi2Se3 or graphene. Although
pure Bi2X3 are expected to be undoped semiconductors20,22,23,
nominally stoichiometric samples are well known to be n- and p-type
semiconductors owing to excess carriers introduced via Se or Te site
defects, respectively16,17. To compensate for the unwanted defect
dopants, trace amounts of carriers of the opposite sign must be added
into the naturally occurring material, which may be easier to achieve
in Bi2Se3 than in Bi2Te3 because the former has a much larger
bandgap15,24 (around 0.35 eV (ref. 25) compared to 0.18 eV (ref. 26),
respectively). To lower the EF of Bi2Se3 into the bulk bandgap, we

substituted trace amounts of Ca21 for Bi31 in as-grown Bi2Se3, where
Ca has been previously shown16 to act as a hole donor by scanning
tunnelling microscopy and thermoelectric transport studies16.
Figure 2a shows that as the Ca concentration increases from 0% to
0.5%, the low temperature resistivity sharply peaks at 0.25%, which
suggests that the system undergoes a metal to insulator to metal trans-
ition. The resistivity peak occurs at a Ca concentration where a change
in signof theHall carrier density also is observed (Fig. 2b),which shows
that formeasuredCa concentrations below and above 0.25%, electrical
conduction is supported by electron and hole carriers, respectively.

We performed systematic time-dependent ARPES measurements
to study the electronic structure evolution of Bi22dCadSe3 as a func-
tion of Ca doping in order to gain insight into the trends observed in
transport (Fig. 2a and b). Early time ARPES energy dispersion maps
taken through the !CC point of the (111) surface Brillouin zone are
displayed in Fig. 2c–h for several Ca doping levels. In the as-grown
(d5 0) Bi2Se3 samples, a single surface Dirac cone is observed with EF
lying nearly 0.3 eV above the Dirac node forming an electron Fermi
surface. We also observe that EF intersects the electron-like bulk
conduction band. When a 0.25% concentration of Ca is introduced,
EF is dramatically lowered to lie near the Dirac node (Fig. 2d), which
is consistent with Ca acting as a highly effective hole donor. Because
the bulk CBM lies at a binding energy of approximately20.1 eV for
d5 0 (Fig. 2c), a 0.3 eV shift in EF between d5 0 and d5 0.0025
suggests that for d5 0.0025, EF is located 0.2 eV below the CBM.
This is consistent with EF being in the bulk bandgap, because the
indirect energy gap between the CBM and the VBM is known from
both tunnelling24 and optical25 data and theory22 to be nearly 0.35 eV.

As the Ca concentration is increased further, the position of EF
continues a downward trend such that by d5 0.01, it is located
clearly below the Dirac node (Fig. 2) and intersects the hole-like bulk
valence band. The systematic lowering of EF with increasing d in
Bi22dCadSe3 observed in early time ARPES measurements
(Fig. 2i–k), which reflect the electronic structure of the sample bulk,
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Figure 1 | Detection of spin-momentum locking of spin-helical Dirac
electrons in Bi2Se3 and Bi2Te3 using spin-resolved ARPES. a, b, ARPES
intensity map at EF of the (111) surface of tuned stoichiometric Bi22dCadSe3
(a; see text) and of Bi2Te3 (b). Red arrows denote the direction of spin
projection around the Fermi surface. c, d, ARPES dispersion of tuned
Bi22dCadSe3 (c) and Bi2Te3 (d) along the kx cut. The dotted red lines are
guides to the eye. The shaded regions in c and d are our projections of the
bulk bands of pure Bi2Se3 and Bi2Te3, respectively, onto the (111) surface.
e, Measured y component of spin-polarization along the !CC{ !MM direction at
EB5220meV, which only cuts through the surface states. Inset, schematic
of the cut direction. f, Measured x (red triangles) and z (black circles)
components of spin-polarization along the !CC{ !MM direction at

EB5220meV. Error bars in e and f denote the standard deviation of Px,y,z
where typical detector counts reach 53 105; solid lines are numerical fits21.
g, Spin-resolved spectra obtained from the y component spin polarization
data. The non-Lorentzian lineshape of the Iy

" and Iy
# curves and their non-

exact merger at large |kx | is due to the time evolution of the surface band
dispersion, which is the dominant source of statistical uncertainty. a.u.,
arbitrary units. h, Fitted values of the spin polarization vector P (Sx,Sy,Sz) are
(sin90ucos295u, sin90usin295u, cos90u) for electrons with 1kx and
(sin86ucos85u, sin86usin85u, cos86u) for electrons with 2kx, which
demonstrates the topological helicity of the spin-Dirac cone. The angular
uncertainties are of the order of 610u and the magnitude uncertainty is of
the order of 60.15.
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Figure 3.7: ARPES experiments results for Bi2Se3 and Bi2Te3. The top left[55]

shows the dispersion relation of Bi2Se3 along one direction ; the brightest areas

being the bulk contribution. We can check the linear dispersion of the surface

state. Top right : the same results apply for Bi2Te3. The grey ares correspond

to bulk states[56]. Bottom : the winding of the spin projection around the

Fermi surface, left for doped Bi2Se3, right for Bi2Te3[56].

STM experiment, a conducting tip is used to scan a surface, when a voltage

bias is applied between the tip and the surface to characterize : electrons can

tunnel from the tip to the surface. The tunneling probability is a function of

the distance of the tip from the surface, the applied voltage and of the local

density of states of the sample, so this method can be used to measure the

latest.

The first comparison between ARPES and STM experiments was done

in Bi2Te3 [14][57], and the integrated density of states derived from ARPES

experiment are in good agreement with the STM measurements (cf Fig. 3.8).

3.1.3.3 Hexagonal warping of the surface state

We can also notice in the inset of the left figure of Fig.3.8 that there is a

deviation of the surface state dispersion from the expected linear behavior.

This was seen in ARPES experiments [58], with sections of the conic dispersion

at different energies : the Fermi surface evolves from a pure circle to a hexagon

and to a snowflake-like shape when the Fermi energy is increased away from

the Dirac point.

45

5.2. Boltzmann equation

Figure 5.2: Left : ARPES data showing the linear dispersion of the topological
insulator surface states labeled SSB, BVB and BCB being the bulk bands [58].
Right : ARPES data showing the Fermi surface of topological insulator surface
state, with projection of the spin in red arrows for every direction [93].

quantity averaged over many realization of the disorder (e.g. different sam-
ples). In our model, we define the zero of energies such that �V (�r)� = 0,
and the second cumulant can be written as �V (�r)V (�r�)� = γδ(�r − �r�). This
value of the second-cumulant shows that we do not consider any correlation
in space between different scattering events, this is why this model is called
uncorrelated gaussian disorder. This corresponds to localized scatterers cen-
ters. Besides its simplicity in calculations, this model is useful in the sense
that it is a limit of dilute impurities at concentration nimp at positions �ri with
a potential v0δ(�r − �ri), when the density goes to infinity keeping nimpv20 = γ
constant [31].

5.2 Boltzmann equation

5.2.1 Hamiltonian diagonalization, density of states

Starting from the kinetic hamiltonian given before one has :

H = �vF (kxσx + kyσ
y) =

�
0 �vFk−

�vFk+ 0

�
, (5.3)

where k± = kx ± iky.

75

Bi2Te3 Alpichshev et al., 2010

D. Hsieh et al., 2009



• Mesoscopic physics = weak disorder, coherent 
transport

• Scattering of the electrons on impurities

• Each trajectory has a given probability amplitude 

• Conductivity

Transport in mesoscopic physics
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• Mesoscopic physics = weak disorder, coherent 
transport

• Scattering of the electrons on impurities

• Each trajectory has a given probability amplitude 
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• In case of time-reversal symmetry : added contribution

• Constructive interference suppressed by magnetic field : Weak 
localization (Altshuler et al., 1980)

Quantum corrections to conductivity

2.1. GENERAL IDEA 33

and the variance �(g − �g�V )2�V (B) as a function of the magnetic field. The results are shown on figure 2.2. They

show that beyond fields of order2 4.10−2T, both the average and variance of conductance over disorder realization

become magnetic field independent, indicating that the statistics over the disorder realization, or the magnetic field

are equivalent.

Figure 2.2: (A): mean conductance obtained from figure 2.1 and the weak localization fit [67]. (B): the variance

over the 46 disorder configurations (at fixed magnetic field) as a function of the magnetic field. Extracted from [65].

2.1.3 Probing matter by coherent electronic waves scattering

We will come back in much more details to the description of these fluctuations in the next chapter. Nevertheless,

we already have all the ingredients to understand the core idea of the MesoGlass project : we consider a metallic

wire of µm size with enough magnetic impurities to develop a spin glass phase in the temperature range where the

electronic transport is coherent. The main goal is to gain access to the overlap between two spin configurations,

whether these configurations correspond to two different quench below the spin glass critical temperature Tg , or two

different times tw, tw + t at a fixed temperature below Tg (see the discussion in section 2.1.1). We want to extract

the information on the two frozen spin configurations by measuring the two corresponding magneto-conductance

traces at such a low temperature that the spin dynamics is quenched. By this procedure, we thus obtain two

snapshots of the spin configurations, similarly to the case of figure 2.1 although we now change the orientations of

the frozen spins of the impurities, and not their positions. By considering the correlation between the two magneto-

conductance traces, we expect to access the correlation between the corresponding spin configurations, the overlap

we look after.

Although we will describe in details this correlation between magneto-conductance traces in the next chapter,

let us already precise the idea sketched above. In the spin glass phase, out of the collection of impurity spins

a macroscopic fraction will be frozen and will not flip during the typical diffusion time of electrons. We will

describe them as frozen classical spins with random orientations. The remaining spins will be able to flip by

interaction with the electron bath : they will be considered as another source of dephasing, and contribute to the

reduction of the phase coherence length Lφ(T ) described in the previous section. We expect naturally this phase

coherence length Lφ(T ) to increase when entering into the spin glass phase : indeed, the freezing of a macroscopic

2This variation at small field is related with a change of universality class of the weak localization, as the magnetic field breaks time reversal

symmetry. We come back to this point in the next chapter.

CooperonDiffuson



Weak anti-localization

16 G. Bergmann, Weak localization in thin films
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Fig. 2.10. The magneto-resistance of a thin Mg-film at 4.5 K for different coverages with Au. The Au thickness is given in % of an atomic layer on
the right side of the curves. The superposition with Au increases the spin-orbit scattering. The points are measured. The full curves are obtained
with the theory by Hikami et al. The ratio T

1/T5, on the left side gives the strength of the adjusted spin-orbit scattering. It is essentially proportional
to theAu-thickness.

because the quenched condensation yields homogeneous films with high resistances. The points are
measured. The spin-orbit scattering of the pure Mg is determined as discussed above. The different
experimental curves for different temperatures are theoretically distinguished by their different H, (i.e.
the inelastic lifetime). This is the only adjustable parameter for a comparison with theory (afterH,,~,is
determined). The ordinate is completely fixed by the theory in the universal units of L00 (right scale).
The full curves give the theoretical results with the best fit of H, which is essentially a measurement of
H1. The agreement between the experimental points and the theory is very good. The experimental
result proves the destructive influence of a magnetic field on QUIAD. It measures the area in which the
coherent electronic state exists as a function of temperature and allows the quantitative determination
of the coherent scattering time T1. The temperature dependence is given by a T

2 law for Mg as is shown
in fig. 2.12.
For other metal films where the nuclear charge is higher than in Mg one finds even in the pure case

the substructure caused by spin-orbit scattering. In fig. 2.13 the magneto-resistance curves for a thin
quench condensed Cu-film are shown. Again the points represent the experimental results whereas the
full curves show the theory. At low temperatures the inelastic lifetime is long and therefore the effect of
the spin-orbit scattering dominates in small fields. At high temperatures the inelastic lifetime becomes
smaller than the spin-orbit scattering time and the magneto-resistance becomes negative because of the
minor role of the spin-orbit scattering. For Au-films the spin-orbit scattering is so strong that it
completely dominates the magneto-resistance.
The natural question is, why does weak localization change to weak anti-localization in the presence

of spin-orbit scattering?

• In presence of 3D spin orbit impurities (Hikami et al., 1980)

• Elastic scattering time modification

• Quantum correction to conductivity :

2 spin 1/2 : 4 cooperon modes 

- 3 triplet (+1/2, killed)

- 1 singlet (-1/2, preserved)

V (�k,�k�) = U(Id+ iλ(�k × �k�).�σ)

Weak anti-localization!

σ = σcl −
αe2

π2� lnL

α : 1 → −1/2

1

τe
= 2πρ(EF )nIU

2(1 + λ2k4F )

WL to WAL correction induced by SOC from 

impurities for electrons with parabolic dispersion 



• Dirac fermions + scalar disorder : weak anti-localization

Coherent transport of Dirac fermions

3

perimentally plotted in Fig. 3 are derived by inverting
the measured resistivity tensor (ρxx, ρxy) and expressing
the data in units of e2/h [see a flash animation in the
supplementary-material-c]. Fits to the two fluid model
σD
xx + σ0 and σD

xy, shown as dotted lines, are found to be
quite accurate for all gate voltages. The residual differ-
ences between the data and fits is attributed below to the
quantum corrections to the conductivity (antilocalization
shown in Fig. 4).

A qualitative discussion of the data sheds some light on
the origins of the parallel conduction σ0. At Vg ≈ 1.75V
(≈ 1V above Vg0), the maximum of the Hall magneto-
conductance occurs at B=0.6 T. In Eq. 2 this maximum
is at B∗ = 2eD/µ(Vg) where the Hall conductance equals
kF #e/2. Since B∗ and kF #e fully specify the Dirac magne-
toconductance, the value of σ0, the parallel conductance,
is found to be of order one in units of e2/h. The value
of σ0 varies little above Vg0 but increases linearly in the
hole region up-to ≈ 4.5e2/h@ Vg = −2V. In this region,
σ0 measures the gradual population of the bulk heavy
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FIG. 3: Longitudinal σxx and Hall σxy magnetoconductance
expressed in units of e2/h. The solid lines are obtained by in-
verting the measured resistivity tensor (ρxx, ρxy) and rescal-
ing in units of e2/h. The dashed lines are obtained by fitting
the experimental curves to σD

xx + σ0 and σD
xy . The difference

between the experimental curves and the fit are analyzed in
terms of the quantum correction to the conductivity (weak-
antilocalization) in Figure 4.
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FIG. 4: The quantum correction to the conductivity are ob-
tained by subtracting the two-fluid fit to the measured longi-
tudinal conductivity. The difference are plotted as a function
of magnetic field for different temperatures. The curves are
fitted to the expected digamma dependence as a function of
field. The characteristic field is Bi = 40 mT at T=1.5 K and
increases with increasing temperature. Beyond Bi, the fitted
curves (dotted lines) are dominated by the logarithmic tails
expected in 2D.

hole subbands. The non-zero Vg-independent value of
σ0 found in the gap region is more surprising. In this
experiment, the transport is measured by contacting the
top face of the HgTe slab. The sample has identical bar-
riers on the top and bottom faces: the latter conduction
is also expected to be dominated by 2D-Dirac carriers.
Based on high field data,[14] we know that two faces are
indeed connected through a 2̃5 kΩ series-resistance[20],
which explains the apparent gap conduction σ0.
Strained HgTe appears to be an almost ideal topolog-

ical insulator for transport studies: • the MBE growth
yields easily gated devices with clean interface where mo-
bilities (≈ 3 104cm2/sec.) are already comparable to
graphene; • the Dirac point lies in the gap, and the gap
conduction is dominated by the surface Dirac carriers; •
the bulk conduction is always very low, and in the coex-
istence region with the heavy hole band there is a natural
mobility-selection of the surface carriers.
A resistance can be expressed as a probability of re-

turn to the origin of charge carriers. In two dimen-
sions, this probability strongly depends on closed-loops
paths. There are two “time-reversed” directions along
which charge particles can travel along each closed loop.
For loop sizes smaller than the phase coherence length,

Strained 
HgTe

Bi2Te3  
thin film

Bouvier et al. , 2011
Kong et al. , 2010

th : Tkachov and Hankiewicz, PRB 84 (2011)
Adroguer et al., NJP 14 (2012)



• Dirac fermions + scalar disorder : weak anti-localization (dot)

• Electrons w/ parabolic dispersion + 3D spin-orbit impurities : 
crossover from weak localization to weak anti-localization (line)

• What is the effect of the spin-orbit impurities on the Dirac 
surface states physics?

Summary of coherent transport

0.2 0.4 0.6 0.8 1. 1.2 1.4 1.6 1.8 2.
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(arb . units)
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Outline

• Introduction to transport in 3D topological insulators

• 3DTI surface states and transport

• Regime of coherent transport (weak localization)

• Effects of spin-orbit impurities in 3DTI

• Elastic scattering time

• Diffusion constant

• Quantum correction to conductivity

• Perspectives



Elastic scattering time
• Model : Dirac fermions + weak scalar disorder + SOC from 

impurities

• Elastic scattering time via Fermi golden rule

• Self energy calculation 

• New : Linear dependance in λ of the elastic scattering time!

H = �vF (�k × �σ)z + V (�k,�k�)

V (�k,�k�) = U(Id+ iλ(�k × �k�).�σ)

1

τe
= πρ(EF )nIU

2

�
1 + λk2F +

λ2k4F
2

�

1

τe
= πρ(EF )nIU

2

�
1 + λk2F +

λ2k4F
2

�



Diffusion constant

• Solving the kinetic equation

• Standard diagrammatic technique (ladder diagram)

• New : Dependence of the diffusion constant on λ!

8

Introducing this result in Eq. 44 we obtain :

�
τe

= 2π
E

2π�2v2
F

ni

�
dθ�

2π

�
v20 cos

2(
θ� − θ

2
) + vSOk

2 sin2(θ� − θ) + v2SOk
4 sin2(θ� − θ) sin2(

θ� − θ

2
)

�
(48)

With the previous notations ρ(E) = E

2π�2v2
F

, γ = niv20 and α = vSOk
2

v0
we obtain the same result :

�
2τe

=
πργ

2

�
1 + α+

α2

2

�
(49)

B. Classical conductivity, solving the Boltzmann equation

The Boltzmann equation reads :

−e �E.�∇�kf =

�
d�k�

(2π)2
2π|��k�|V |�k�|2δ(E(�k�)− E(�k))(f(�k�)− f(�k)) (50)

In this equation, �E is the electric field applied, and f is the perturbed density of states. In the following, we are
going to assume the electric field is along the x axis, and look for an ansatz of the form f(�k) = nF (�(�k)) + f̄(θ), with
f̄ ∝ E. Consequently, after the integration over |�k| we need to solve the simpler equation :

−eEx

∂�

∂kx
= 2πρ(EF )

�
dθ�

2π
|�θ�|V |θ�|2

�
f̄(θ�)− f̄(θ)

�
(51)

Looking for a solution of the form f̄(θ) ∝ evF τeEx cos θ gives an equation to solve for the proportionnal constant.
We find in the end that :

f̄(θ) = 2
1 + α+ α2/2

1 + 2α+ 5α2/4
evF τeEx cos θ (52)

We can now compute the current in the x direction :

jx =

�
d�k

2π
e

∂�

�∂kx
f̄(θ)δ(�(�k)− EF ) (53)

This gives the longitudinal conductivity :

σxx =
jx
Ex

= e2ρ(EF )v
2
F τe

1 + α+ α2/2

1 + 2α+ 5α2/4
(54)

and we obtain the diffusion constant through the Einstein relation σ = e2ρ(E)D as :

D = v2F τe
1 + α+ α2/2

1 + 2α+ 5α2/4
=

�v2
F

πρ(E)γ

(1 + α+ α2/2)2

1 + 2α+ 5α2/4
(55)

C. Diffuson structure factor

The results in this section are false, due to a bad assumption (cf V for good results). However some

notations and method introduced here are used in the rest of the discussion.

The Bethe-Salpeter equation for the diffuson structure factor reads :

ΓD(θ, θ�, �q) = bD(θ, θ�) +

�
d �k��

(2π)2
Γ(θ��, θ)�GR( �k��)GA( �k�� − �q)bD(θ��, θ) (56)

a∗i
ai

σ = e2ρ(EF )D
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=
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G  (k−q)
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D

Figure 7: Diagrammatic representation of the Bethe-Salpeter equation obeyed by the diffuson structure factor where we have
explicited the spin structure.

For each mode, the Bethe-Salpeter equation reduces to :

ΓD(n)(�q) = bD(n) +
πρτe
2� bD(n)ΓD(n)(�q)PD(�q) (65)

D. Spin structure

This section introduces some notations and method used in the section V.
So far, we have neglected the spin structure in the previous calculation as it does not play a role in the elementary

vertex b in the absence of spin-orbit impurities (corresponding to the case bD = γId ⊗ Id). Looking to Fig. 7, we
observe that the Bethe-Salpeter equation for each mode should be written as :

ΓD(n)
αβ
γδ

= bD(n)
αβ
γδ

+
�

µ,ν
λ,κ

ΓD(n)
αµ
γλ

PD
µν
κλ
bD(n)
νβ
κδ

(66)

In this expression, we have :

bDαβ
γδ

= �Vαβ(�k, �k�)V
∗
γδ(�k, �k

�)� (67)

nI |U |2
�
Idαβ ⊗ Idγδ + iα sin(θ� − θ)(σz

αβ ⊗ Idγδ − Idαβ ⊗ σz
γδ) + α2 sin2(θ� − θ)σz

αβ ⊗ σz
γδ

�
(68)

PD
µν
κλ

= (1− v2F τ
2q2

2
)

�
Idµν ⊗ Idκλ +

1

2
(σx

µν ⊗ σx
κλ + σy

µν ⊗ σy
κλ)

�

− i
vfτ

2

�
qx(σ

y
µν ⊗ Idκλ + Idµν ⊗ σy

κλ)− qy(σ
x
µν ⊗ Idκλ + Idµν ⊗ σx

κλ)
�

− v2F τ
2

8

�
(q2x − q2y)(σ

y
µν ⊗ σy

κλ − σx
µν ⊗ σx

κλ)− 2qxqy(σ
y
µν ⊗ σx

κλ + σx
µν ⊗ σy

κλ)
�

(69)

We observe that in Eq. 66, the order of the spins in the lower branch is not the same as the order we need for matrix
operation. It is thus more convenient to introduce P̃D(�q) such that we can perform a simple matrix product. We can
do so by transposing the second matrix in the tensorial product (the λ,κ indices, which corresponds to attribute a
minus sign to σy).

We must insist on the fact that this is not a matter of convention in the drawing of the Bethe-Salpeter equation, it
comes from the fact that in our convention the advanced Green function with an arrow pointing from the spin s to the
spin s� is GA

s�s, in relation with GA(�r�,�r) = GR(�r, �r�)∗. Moreover, to compare this result to the case of the cooperon

where the advanced Green functions branch is reversed, we need to remember that cooperon associates GR(�k) with
GA(−�k).

Consequently we introduce P̃D as :

σcl = e2ρ(EF )v
2
fτe

�
1− λk2F +

5λ2k4F
4

+ o(λ2)

�

σcl = e2ρ(EF )v
2
fτe

�
1− λk2F +

5λ2k4F
4

+ o(λ2)

�

+



4

R

=
C

G  (k)

G  (Q−k)
A

C

Figure 4: Diagrammatic representation of the Bethe-Salpeter equation obeyed by the cooperon structure factor.

In this equation, Tr means a trace over all quantum numbers (momenta and spins), whereas tr is a trace only on

the spins, the integration over the momenta being calculated in PD
. We can note that the current renormalization

we calculated takes into account both the ”bubble diagram” and the ”ladder diagram”, this is why the second current

operator is not renormalized.

Using the relation between the elastic scattering time and the strength of the disorder �/τe = πρ(EF )γ, we can

express the conductivity tensor as a function of the scattering time and finds for the longitudinal conductivity :

�σDr
αβ � =

�
2π

e2v2F 2
δαβ
γ

= e2ρ(EF )v
2
F τeδαβ . (18)

Using the Einstein relation σ = e2ρD, this gives a diffusion constant D = v2F τe as previously calculated. The

transport time τtr in diffusive motion is defined as D =
v2
F τtr
d where d is the dimensionnality of the motion. In this

case we observe the expected doubling of the transport time compared to the elastic scattering time expected for

Dirac fermions. This doubling can be interpreted as the fact that because of the suppression of the backscattering

(because of time-reversal symmetry), it is necessary to encounter two scattering events to lose information about the

initial direction of the incoming electron.

We observe that the calculation of the classical conductivity is enough to derive the value of the diffusion constant,

and that it is not necessary to perform the fastidious series expansion in the calculation of PD
(�q).

II. WEAK ANTI LOCALIZATION CORRECTION

To calculate the WAL correction, we need to calculate two new objects : the cooperon structure factor and the

Hikami box. The cooperon structure factor (sometimes labelled as maximally crossed diagram) also obeys a Bethe-

Salpeter equation as :

ΓC
αβ,γδ(

�Q) = γIdαβ ⊗ Idγδ +
�

µ,ν

�

�k
ΓC
αµ,γν(

�Q)�GR
µβ(

�k)��GA
νδ(

�Q− �k)�γ (19)

The calculation are very similar to the diffuson structure factor, and we approximate this cooperon structure factor

by its only diffusive mode at long distance, the singlet one as :

ΓC
( �Q) = γ

1

DQ2τe

1

4
[Id⊗ Id− σx ⊗ σx − σy ⊗ σy − σz ⊗ σz

] . (20)

The quantum correction to conductivity (or weak anti-localization) �∆σ� = �σ� − �σDr� originating from the

cooperon contribution is obtained similarly to the diffuson correction by calculating :

�∆σαβ� =
�
2π

Tr
�
GA

(�k)JαG
R
(�k)ΓC

( �Q = �k + �k�)GR
(�k�)JβG

A
(�k�)

�
. (21)

The Tr part is an integration over the momenta �k and �k� or similarly the momenta �k and �Q as long as the condition

�Q = �k + �k� is preserved. The expression for ΓC
shows that the dominant part of the integration comes from for

Quantum correction to conductivity

• Cooperon structure factor

• 1 singlet mode and 3 triplets : one single diffusive 
(gapless)  mode 

• Always weak anti-localization
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• Dirac fermions : always weak antilocalization

• Hikami-Larkin-Nagaoka : dependance on the dimension (in 2D, 
SU(2) symmetry not totally broken, 1 triplet remains)

What we learnt in coherent transport?
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Conclusions and perspectives

• Linear dependence in λ of the elastic scattering 
time

• Diffusion constant dependence in λ

• Weak anti-localization preserved

• Hikami-Larkin-Nagaoka formula do not give WAL 
for surface states  

• Derivation of the quantum correction to 
conductivity in presence of magnetic field 

• Characteristic mag. field
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