Diffusion of semi-Dirac excitations

<u>P.Adroguer¹</u>, D.Carpentier¹, G. Montambaux², E. Orignac¹

¹Laboratoire de Physique, Ecole Normale Supérieure de Lyon, France ²Laboratoire de Physique des Solides, Univ. Paris-Sud, Orsay, France

Semi-Dirac excitations

• Hexagonal lattice (graphene)

• 2 Dirac fermions, with topologic number

 $\mathcal{H} = \hbar v_F \vec{\sigma}.\vec{q}$

r		1111
		1111
		1111
	# # # # # # # # # # # # # # # # # # #	1111
	# # # # # # # # # # # # # # # # # # #	1111
	# # # # # # # # # # # # # # # # # # #	****
	<i>***</i>	***
	<i> ★★</i> ₹₹\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	***
	<i> ***</i> *********************************	****
	<i>***</i>	****
		+++
	*** AXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
	************************	~~~
	****************	***
	***************	****
	***************	****
	× × × ↓ ↓ <i>↓ ↓ ↓ ↓ × × × × × × × × × × ↓ ↓ ↓ × × × ×</i>	***
	XXXVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV	****
	× × ¥ ¥ ¥ ¥ ¥ <i>¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ </i>	****
	X X X X X X X X X X X X X X X X X X X	××××
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	- XXXX
	~ ~ ~ + + + + + + + + + + + + + + + +	- XXXX
	~ ~ ~ + + + + + + + + + + + + + + + +	× × × × ×
	* * * * * * * * * * * * * * * * * * *	****
	~ ~ ~ + + + + + + + + + + + + + + + +	× × × ×
	<i>* * * * * * * * * * * * * * * * * * *</i>	X X X X

Semi-Dirac excitations

- Merging of the Dirac cones $\mathcal{H} = (\Delta + \frac{\hbar^2 q_x^2}{2m})\sigma^x + \hbar v_F \sigma^y q^y$ Montambaux et al., 2009 $\Delta < 0$ $\Delta = 0$ $\Delta = 0$ $2\Delta < 0$
 - $\Delta = 0$: Semi-Dirac excitation, \mathcal{H}

$$\mathcal{L} = \frac{\hbar^2 q_x^2}{2m} \sigma^x + \hbar v_F \sigma^y q^y$$

Also predited in VO₂/TiO₂ heterostructures

Pardo and Pickett, 2009

Diffusion

- Scattering processes
- Classically, $\langle \sigma \rangle \propto \sum p_i$

• Coherent regime, memory of the phase : quantum interferences $\delta\sigma\propto\sum a_i^*a_j$

 $i \neq i$

Regime of diffusive transport

- Semi classical approach, $\lambda_F \ll l_e$ (perturbative approach)
- Experimental regime : high Fermi energy (good metal)
- Hamiltonian : $\mathcal{H} = \frac{\hbar^2 q_x^2}{2m} \sigma^x + \hbar v_F \sigma^y q^y$ $\langle V(\vec{r}) \rangle = 0 \qquad \langle V(\vec{r}) V(\vec{r'}) \rangle = \gamma \delta(\vec{r} - \vec{r'})$
- Sample length \gg mean free path l_e
- Weak disorder regime
 - Boltzmann equation
 - Diagrammatics

Boltzmann equation

• Spinorial nature : Anisotropy of the scattering

$$|\psi(\vec{k})\rangle = \left(\begin{array}{c} 1\\ e^{i\theta_{\vec{k}}} \end{array}\right)$$

$$|\langle \psi(\vec{k})|\psi(\vec{k'})\rangle|^2 = \frac{1+\cos(\theta-\theta')}{2}$$

• Anisotropy of the density of states

High density

Boltzmann equation

Stronger anisotropy of the scattering for semi-Dirac excitations compared to Dirac fermions

• Combination of these two anisotropies : Anisotropy of the diffusion $D_x \neq D_y$

Diagrammatics

• Direction dependant elastic mean free time

$$-\Im\Sigma = \frac{1}{\tau_e}Id + \frac{\cos\theta}{\tau_e^*}\sigma^x$$

- 2 diffusive modes, I diffuson and I cooperon
- Drude conductivity tensor

$$\sigma_{xx} = \frac{e^2}{h} \frac{2E\hbar^2}{m\gamma} \frac{2e}{\tilde{a}} \qquad \sigma_{yy} = \frac{e^2}{h} \frac{\hbar^2 v_F^2}{\gamma} \frac{2c}{\tilde{a}} \qquad \sigma_{xy} = \sigma_{yx} = 0$$

• Weak anti-localization (Quantum interferences)

Topological phase transition

• Dependance in Δ of the conductances

Conclusion

• Significative difference with Dirac or non-relativistic excitations : anisotropic diffusion

• Study of the topological phase transition

- Weak antilocalization (symplectic class)
- Details soon on ArXiv