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• Hexagonal lattice (graphene)  

• 2 Dirac fermions, with topologic number

Semi-Dirac excitations
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FIG. 7: Relative phase θ!q of the two-component wave function. The parameter are chosen in arbitrary units m∗ = cy = 1. The
four plots correspond respectively from left to right and then from top to bottom: ∆ = −1,−.3, 0, 1. In the insulating phase, two
opposite Berry phases are attached to the two Dirac points. The Berry phases annihilate at the transition point.

FIG. 8: Semiclassical quantization of area. When ε < −∆, the quantization of energy levels results from the quantization of
orbits in each valley S(ε)#2B = 2πneB and the spectrum has the double valley degeneracy. When ε > −∆, above the saddle
point, the quantization implies larger orbits which encircle the two Dirac valleys, and it reads S(ε)#2B = 2π(n′ + 1/2)eB .

E. Semiclassical quantization and integrated density of states

It is instructive to derive the energy levels from semiclassical Bohr-Sommerfeld quantization: along one period of
the motion, the action must be quantized. This condition can be written as

S(ε) = 2π(n + γ)
eB

!
, (37)

where S(ε) is the area of a cyclotron orbit of energy ε is reciprocal space. It is simply S(ε) = 4π2N(ε) where N(ε)
is the integrated density of states which can be obtained from expressions (15). The phase mismatch γ is the sum
of two contributions γ = γM + γB where γM is the Maslov contribution and γB results from the Berry phase. We
obtain, for ε < −∆:
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where K(x) and E(x) are respectively complete elliptic integrals of the first and of the second kind.24 This quantity
represents the area enclosed by each of the two degenerate equal energy lines encircling one Dirac point (Fig. 8).
The phase mismatch cancels here due to a finite Berry phase γB = ±1/2,25 so that the quantization condition is
S(ε) = 2πneB.
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m∗, cx qD = m∗cx ∆ = −m∗c2/2

m∗, ∆ cx =
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−2∆/m∗ qD =
√
−2m∗∆

cx, ∆ qD = −2∆/cx m∗ = −2∆/c2
x

qD, ∆ m∗ = −q2
D/2∆ cx = −2∆/qD

TABLE I: In addition to the velocity cy, the universal Hamiltonian is described by two independent parameters (left column)
from which two other parameters may be deduced

III. PROPERTIES OF THE UNIVERSAL HAMILTONIAN

FIG. 1: Evolution of the spectrum when the quantity ∆ is varied and changes in sign at the topological transition (arbitrary
units). The low-energy spectrum stays linear in the qy direction.

Without loss of generality, we assume m∗ > 0. When ∆ varies from negative to positive values, a topological
transition from a semi-metallic phase with two Dirac cones and a band insulator with a gapped spectrum occurs. At
the transition, the spectrum is hybrid, a reminiscence of the saddle point in the semi-metallic phase, see figure (1).

When ∆ < 0, the spectrum exhibits two Dirac points the position of which along the x axis is given by ±qD with

qD =
√
−2m∗∆ (13)

and the linear spectrum around these Dirac points is characterized by the velocity cx along the x direction :

cx =
qD

m∗ =

√

−2∆

m∗ . (14)

The two Dirac points are separated by a saddle point at position qS = 0 whose energy is ±|∆|. The mass m∗ describes
the curvature of the spectrum at the vicinity of this point along the x direction. When ∆ < 0 varies, the Dirac points
move along the qx axis.

The energy dispersion relation (12) is characterized by three parameters, the velocity cy along the qy direction, the
mass m∗ along the qx direction and the gap ∆. Alternatively, it can be characterized by the distance 2qD between
the Dirac cones or the velocity cx, or by any combination of two among the four parameters m∗, ∆, cx, or qD. In table
(I), we write explicitly all the combinations between these parameters. The universal Hamiltonian describes properly
the vicinity of the Dirac points. The spectrum can be linearized along the qx direction, to recover a anisotropic Dirac
equation in the vicinity of each point with a velocity cx given by (14)

H = �vF�σ.�q



• Merging of the Dirac cones  

• Δ = 0 : Semi-Dirac excitation, 

Semi-Dirac excitations
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Diffusion

• Scattering processes

• Classically,  

• Coherent regime, memory of the phase : quantum 
interferences
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Results
Sample preparation and characterization. The Bi2Te2Se TI
microflakes are prepared on a silica-capped silicon wafer by a
mechanical exfoliation method. The four-probe electrodes were
then applied onto the microflakes by a standard lift-off procedure.
Fig. 1(a) shows the typical configuration during the transport
measurement. The height (H), width (W) and length (L) of the
present sample are 62 nm, 1.2 mm and 1.5 mm respectively, where
L is defined as the distance between the voltage probes in the four-
probe configurations. Fig 1(b) shows the temperature dependence of
its resistance, indicating the bulk insulating of the sample. The energy
gap D is 4.9 meV determined by adopting the Arrhenius equation22.
TheMC curves of themicroflakes are measured from29 to 9T while
rotating the samples and varying the temperatures.

Identifying the UCF features in the MC measurement. The UCF
patterns can be identified while the magnetic field (B) is
perpendicular to the sample (h50u) as shown in Fig. 1(c). The
conductance displays the aperiodic features and strongly
temperature-dependent fluctuations. These features originate from
the UCF effect as supported by the following characteristics. Firstly,
the ‘‘noisy’’ (or aperiodic) CF patterns can be observed repeatedly. It
shows the similar features in the differentMC curvesmeasured at the
different temperatures because some specific ‘‘fingerprints’’ of the
samples can be seen. Secondly, The root mean square of the CFs

dGrms~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dG Bð Þ{ dG Bð Þh i½ $2

" #q
, where ,…. expresses the

ensemble average, also decays from nearly 0.008 to 0.002 e2/h
when the temperature increases from 2 to 30 K, implying its
quantum mechanical nature. It is well known that the UCF
amplitudes undergoes the average reduction when the sample
dimensions are longer than LQ26,28. Quantitatively, following
the calculations in Ref.28,33, the 2D UCF theory predicts dGrms,
0.86(e2/h)/(2N)1/2 at T50 K which agrees to the experimental value

in orders, where N5L3W/L2
Q represents the number of independent

phase-coherent regions on the TI’s surface. Finally, the temperature-
dependent dGrms is investigated. According to the UCF theory for 2D
system26,28, we have dGrms/ (lnT/T)1/2, which also agrees to our
experimental data, as shown in Fig 1(d). All the above
experimental observations unambiguously support the UCFs in
Bi2Te2Se TI microflakes and suggest the 2D nature of the carriers.

Experimental evidence of the 2D origin of the UCF.We investigate
the 2D origin of the UCF by the magnetic field-tilting MC
measurements. As schematically shown in Fig 2(a), the phase shifts
along some enclosed paths determine the UCF patterns upon the
application of an external field26,28,33. In an ideal 2D electronic system,
such phase shifts solely depend on the normal components
(BH5Bcosh) of the magnetic field. The UCF patterns accordingly
evolve as a function of BH. Therefore, the solely-BH-dependent UCF
patterns can manifest the UCF of a 2D electron system, essentially
the novel SS for a TI sample34. It is indeed observed as shown in
Fig. 2(b), where the angular-dependent UCFs are clearly seen. We
can find three small peaks (p1, p2 and p3) in the dG-B curves shift
towards the high-B direction and their widths are monotonically
broaden with increasing h, as guided by the circle-marked lines.
The locations of three peaks are plotted against h in Fig. 2(c). The
solid curves are the least square fittings, which ideally display the
characteristic of 1/cosh dependence. The 2D nature of the UCF
pattern is further confirmed by the angle-dependent dGrms, as
shown in Fig. 2(d). Generally, dGrms is expected to be unchanged
while varying h due to the isotropic LQ in a 3D system. We can find
dGrms maintains comparable while h is below 40u. However, when h
exceeds 45u, dGrms drops abruptly, which can be explained by the
contribution of a 2D conducting states. In a TI system, the UCF
contributions from the electrons of the bulk states gradually
predominate while h is increasing17,20. The present anisotropic

Figure 1 | The UCF and its temperature dependence. (a) the schematic diagram of themeasurement configuration. (b) Temperature dependence of the
resistance and resistivity of a Bi2Te2Semicroflake. The left inset shows its AFM imagewith the scale bar of 4mm.The right inset shows the Arrhenius fitting
ofr(T)with the result of a 4.9 meVband gap. (c) Conductance fluctuations plotted against B at various temperatures (h50). The aperiodic dG-B patterns
appear repeatedly. For clarity, adjacent curves are displaced vertically. (d) dGrms and its temperature dependence. The inset shows the data in a linear scale.
The solid curve is fit by the traditional UCF theory.
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all of our samples. This highlights the e-t.ph interaction in the elec-
tron relaxation of the present TI samples.
The above study of the transport environment well explains the

present observations of the solely-BH-dependent 2D UCF. In TIs,
the UCF patterns are composed of contributions from the SS and
bulk carriers, both of which undergo the average reduction of their
amplitudes while the sample size exceeds LQ. A poor-man approach
to obtain the SS-dominated UCF is to suppress the amplitudes of the
UCF from bulk carriers, as has been implemented in this work. One
may know dGrms is dominantly contributed by the bulk electrons
while measuring theMC curve at some high angles near h590u. Such
UCF amplitudes from the bulk electrons should be isotropic for a 3D
interference system. In our samples, dGrms (h 5 90u) equals 0.003
e2/h, which is much lower than the amplitudes of SS UCF. This
confirms the suppression of the bulk UCF firstly. Secondly,
LQ3D,12 nm can be estimated with a comparable error by applying
the 3D UCF theory28. All of our samples exhibit the similar bulk

dephasing lengths. Due to the fact that LQ3D , H, L, W, we believe
the 3D interference transport of the bulk electrons in our samples.
Accordingly, the 2D UCF discussed above reasonably originates
from the SSs. Thirdly, we see the transport quality of the samples.
Generally, the TI samples have been delicately prepared to keep the
perfection of the crystals in order to maintain the topological anom-
aly and the well-defined SS transport3, which leads to some high
values of bulk mobilities, especially for the binary TIs. This accord-
ingly expects a satisfactory LQ and a UCF amplitude for the bulk
electrons competitive to those of the SS electrons. However in the
ternary TIs, high defect ratios and low mobilities have been demon-
strated23 due to plenty of antisite defects between Te and Se and
related vacancies. A much lower LQ, i.e. about 10 nm, for the bulk
carriers is then reasonable, while a relatively good value, i.e.about
120 nm, is obtained for the SS since the SS carriers may immune to
some scatterings due to their helical transport3,4. Therefore, we finally
argue that the ‘‘deteriorated’’ electronic environment in the ternary
TIs suppresses the bulkUCF and helps the survival of the 2DUCFs in
the present study.
In summary, we have successfully demonstrated the UCF of the

2D SSs by measuring the solely-BH-dependent UCF patterns in TI
Bi2Te2Se microflakes. It is observed in the TI samples with a short LQ
of the bulk carriers, which suppress the UCF’s amplitudes from the
bulk carriers and helps the survival of the UCF of the 2D SS. The e-ph
scattering is suggested as the other dephasing source for the SS of TI
samples. The present workmay pave the TI-based spintronic devices
and quantum information materials and their room-temperature
applications.

Methods
Crystal growth and characterization. The well-refined Bi2Te2Se crystals were grown
bymelting the high purity powders (99.999%) of Bi, Te, Se with amolar ratio of 25251
at 850uC in evacuated quartz tubes for 3 days. It was followed by cooling slowly to
550uC for 8 days and then an annealing for 5 days before rapidly cooling to room
temperature. The ordering of the chalcogen layers in the Bi2Te2Se precursor crystals
was confirmed by the x-ray powder-diffraction22. The Bi2Te2Semicroflakes were then

Figure 4 | Temperature dependence of LQ obtained from the WAL
(square) and UCF data (circle). The big error of LQ at 30 K from UCF is
due to nearly disappearance of theUCF. The solid curve shows the fitting of
the experimental data according to the scaling formula (2) with p’5 1 and
p 5 2. The dashed line is the e-e interaction fitting.

Figure 3 | The 2DWAL effect of the SSs in TIs. (a)DR5R(B) -R(0) as a function of Bmeasured at various h at 2 K. (b)DG(BH) curves after subtracting
the bulk contribution. The data were measured at T5 2 K. (c) DG(B) as a function of B at various temperatures (h5 0). The solid curves are the least-
square fittings according to the 2D WAL theory. (d) a as a function of temperature obtained from the fitting. Its value near 0.5 rules out the issue of
electron interference between two surfaces.
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• Semi classical approach,                  (perturbative approach) 

• Experimental regime : high Fermi energy (good metal)

• Hamiltonian : 

• Sample length     mean free path       

• Weak disorder regime

Regime of diffusive transport

- Boltzmann equation
- Diagrammatics
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Boltzmann equation
• Spinorial nature :  Anisotropy of the scattering

• Anisotropy of the density of states
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Boltzmann equation

• Stronger anisotropy of the scattering for semi-Dirac 
excitations compared to Dirac fermions

• Combination of these two anisotropies : Anisotropy of 
the diffusion
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Diagrammatics

• Direction dependant elastic mean free time

• 2 diffusive modes, 1 diffuson and 1 cooperon

• Drude conductivity tensor

• Weak anti-localization (Quantum interferences)
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Topological phase transition

• Dependance in Δ of the conductances
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move along the qx axis.

The energy dispersion relation (12) is characterized by three parameters, the velocity cy along the qy direction, the
mass m∗ along the qx direction and the gap ∆. Alternatively, it can be characterized by the distance 2qD between
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Conclusion

• Significative difference with Dirac or non-relativistic 
excitations : anisotropic diffusion

• Study of the topological phase transition 

• Weak antilocalization (symplectic class)

• Details soon on ArXiv

4

qD, m∗ cx = qD/m∗ ∆ = −q2
D/2m∗

qD, cx m∗ = qD/cx ∆ = −cxqD/2

m∗, cx qD = m∗cx ∆ = −m∗c2/2

m∗, ∆ cx =
p

−2∆/m∗ qD =
√
−2m∗∆

cx, ∆ qD = −2∆/cx m∗ = −2∆/c2
x

qD, ∆ m∗ = −q2
D/2∆ cx = −2∆/qD

TABLE I: In addition to the velocity cy, the universal Hamiltonian is described by two independent parameters (left column)
from which two other parameters may be deduced

III. PROPERTIES OF THE UNIVERSAL HAMILTONIAN

FIG. 1: Evolution of the spectrum when the quantity ∆ is varied and changes in sign at the topological transition (arbitrary
units). The low-energy spectrum stays linear in the qy direction.

Without loss of generality, we assume m∗ > 0. When ∆ varies from negative to positive values, a topological
transition from a semi-metallic phase with two Dirac cones and a band insulator with a gapped spectrum occurs. At
the transition, the spectrum is hybrid, a reminiscence of the saddle point in the semi-metallic phase, see figure (1).

When ∆ < 0, the spectrum exhibits two Dirac points the position of which along the x axis is given by ±qD with

qD =
√
−2m∗∆ (13)

and the linear spectrum around these Dirac points is characterized by the velocity cx along the x direction :

cx =
qD

m∗ =

√

−2∆

m∗ . (14)

The two Dirac points are separated by a saddle point at position qS = 0 whose energy is ±|∆|. The mass m∗ describes
the curvature of the spectrum at the vicinity of this point along the x direction. When ∆ < 0 varies, the Dirac points
move along the qx axis.

The energy dispersion relation (12) is characterized by three parameters, the velocity cy along the qy direction, the
mass m∗ along the qx direction and the gap ∆. Alternatively, it can be characterized by the distance 2qD between
the Dirac cones or the velocity cx, or by any combination of two among the four parameters m∗, ∆, cx, or qD. In table
(I), we write explicitly all the combinations between these parameters. The universal Hamiltonian describes properly
the vicinity of the Dirac points. The spectrum can be linearized along the qx direction, to recover a anisotropic Dirac
equation in the vicinity of each point with a velocity cx given by (14)

4

qD, m∗ cx = qD/m∗ ∆ = −q2
D/2m∗

qD, cx m∗ = qD/cx ∆ = −cxqD/2

m∗, cx qD = m∗cx ∆ = −m∗c2/2

m∗, ∆ cx =
p

−2∆/m∗ qD =
√
−2m∗∆

cx, ∆ qD = −2∆/cx m∗ = −2∆/c2
x

qD, ∆ m∗ = −q2
D/2∆ cx = −2∆/qD

TABLE I: In addition to the velocity cy, the universal Hamiltonian is described by two independent parameters (left column)
from which two other parameters may be deduced

III. PROPERTIES OF THE UNIVERSAL HAMILTONIAN

FIG. 1: Evolution of the spectrum when the quantity ∆ is varied and changes in sign at the topological transition (arbitrary
units). The low-energy spectrum stays linear in the qy direction.

Without loss of generality, we assume m∗ > 0. When ∆ varies from negative to positive values, a topological
transition from a semi-metallic phase with two Dirac cones and a band insulator with a gapped spectrum occurs. At
the transition, the spectrum is hybrid, a reminiscence of the saddle point in the semi-metallic phase, see figure (1).

When ∆ < 0, the spectrum exhibits two Dirac points the position of which along the x axis is given by ±qD with

qD =
√
−2m∗∆ (13)

and the linear spectrum around these Dirac points is characterized by the velocity cx along the x direction :

cx =
qD

m∗ =

√

−2∆

m∗ . (14)

The two Dirac points are separated by a saddle point at position qS = 0 whose energy is ±|∆|. The mass m∗ describes
the curvature of the spectrum at the vicinity of this point along the x direction. When ∆ < 0 varies, the Dirac points
move along the qx axis.

The energy dispersion relation (12) is characterized by three parameters, the velocity cy along the qy direction, the
mass m∗ along the qx direction and the gap ∆. Alternatively, it can be characterized by the distance 2qD between
the Dirac cones or the velocity cx, or by any combination of two among the four parameters m∗, ∆, cx, or qD. In table
(I), we write explicitly all the combinations between these parameters. The universal Hamiltonian describes properly
the vicinity of the Dirac points. The spectrum can be linearized along the qx direction, to recover a anisotropic Dirac
equation in the vicinity of each point with a velocity cx given by (14)

4

qD, m∗ cx = qD/m∗ ∆ = −q2
D/2m∗

qD, cx m∗ = qD/cx ∆ = −cxqD/2

m∗, cx qD = m∗cx ∆ = −m∗c2/2

m∗, ∆ cx =
p

−2∆/m∗ qD =
√
−2m∗∆

cx, ∆ qD = −2∆/cx m∗ = −2∆/c2
x

qD, ∆ m∗ = −q2
D/2∆ cx = −2∆/qD

TABLE I: In addition to the velocity cy, the universal Hamiltonian is described by two independent parameters (left column)
from which two other parameters may be deduced

III. PROPERTIES OF THE UNIVERSAL HAMILTONIAN

FIG. 1: Evolution of the spectrum when the quantity ∆ is varied and changes in sign at the topological transition (arbitrary
units). The low-energy spectrum stays linear in the qy direction.

Without loss of generality, we assume m∗ > 0. When ∆ varies from negative to positive values, a topological
transition from a semi-metallic phase with two Dirac cones and a band insulator with a gapped spectrum occurs. At
the transition, the spectrum is hybrid, a reminiscence of the saddle point in the semi-metallic phase, see figure (1).

When ∆ < 0, the spectrum exhibits two Dirac points the position of which along the x axis is given by ±qD with

qD =
√
−2m∗∆ (13)

and the linear spectrum around these Dirac points is characterized by the velocity cx along the x direction :

cx =
qD

m∗ =

√

−2∆

m∗ . (14)

The two Dirac points are separated by a saddle point at position qS = 0 whose energy is ±|∆|. The mass m∗ describes
the curvature of the spectrum at the vicinity of this point along the x direction. When ∆ < 0 varies, the Dirac points
move along the qx axis.

The energy dispersion relation (12) is characterized by three parameters, the velocity cy along the qy direction, the
mass m∗ along the qx direction and the gap ∆. Alternatively, it can be characterized by the distance 2qD between
the Dirac cones or the velocity cx, or by any combination of two among the four parameters m∗, ∆, cx, or qD. In table
(I), we write explicitly all the combinations between these parameters. The universal Hamiltonian describes properly
the vicinity of the Dirac points. The spectrum can be linearized along the qx direction, to recover a anisotropic Dirac
equation in the vicinity of each point with a velocity cx given by (14)


