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• Continuity limit of a random walk (mean free path     )

• Semi classical approach  

• Experimental regime, high Fermi energy : good metal

• Sample length     mean free path       

• Weak disorder regime

Diffusion

- Boltzmann equation
- Diagrammatics
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• Integro-differential equation

• 2 quantities of interest : scattering probability and density 
of states

• Linear response : Drude’s conductivity (no quantum 
corrections, no UCF)

Boltzmann equation
5.3. Standard diagrammatic technique

at a given wavevector f(�k) :

−e �E.
∂f

∂�k
= �

�
d�k�

(2π)2
2π|��k�|V |�k�|2δ(E(�k�)− EF )

�
f(�k�)− f(�k)

�
� . (5.10)

To solve it, we assume that the local density of states f(�k) responds linearly

to the electric field, and look to the first order terms in the electric field. We use

the ansatz f(�k) = nF (E(�k))+ ∂nF
∂E f̄(θ) where θ accounts for the direction of the

wavevector �k. Using the value of the spinor overlap |�θ�|θ�|2 = (1+cos(θ�−θ))/2
we solve the equation in f̄ assuming the electric field is along the x-axis and

find :

f̄(θ) = 2evF τe cos θEx . (5.11)

We can derive the electric current along the x-axis caused by the electric

field jx =
�

d�k
(2π)2 e

1
�
dE
dkx

f̄(θ)δ(E(�k)− EF ) and dividing by the electric field we

find the classical Drude conductivity :

σxx = e2v2F τeρ(EF ) . (5.12)

Using the Einstein equation σ = e2ρD, it is possible to determine the

diffusion constant D = v2F τe and the corresponding transport time τtr defined

as D =
v2F τtr

d where d is the dimensionality of the problem, here d = 2. In

this case, there is a doubling of the transport time compared to the elastic

scattering time due to the anisotropy of the scattering : we have seen that

the probability for a given state to be scattered into another direction is not

the same in every direction, even if the disorder is isotropic. Starting from a

given direction �k, after a single scattering event, the probability of going in

the direction �k� = −�k is strongly reduced. After two scattering events, this

probability is proportional to the convolution of two g(�k, �k�) :

g(2)(�k, �k�) =

� 2π

0

dt

π

1 + cos(t− θ)

2

1 + cos(θ� − t)

2
. (5.13)

The normalization factor in the integral of π comes from the normalization

of the scattering probability as
�
�k� g(

�k, �k�) = π.

We can check on the plot of Fig. 5.5, that the scattering probability be-

comes of the same order of magnitude for every direction after two scattering

events, so we can consider we have lost memory of the initial direction of

propagation and we have entered a diffusive regime.

5.3 Standard diagrammatic technique

In the precedent section, we have seen that we can derive the value of the clas-

sical conductivity from the Hamiltonian of the problem. However, solving the

Boltzmann equation does not provide any information about the corrections
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• Linear response : Kubo formula

• Quantum mechanics

• Classical part (diffuson) = Drude’s 
conductivity

• Quantum interferences (cooperon) :  
WL, UCF

Standard diagrammatic technique

σ ∝
�

i,j

a∗i aj

Bi2Te3  

Kong et al. , 2010

σαβ =
�

2πΩ
� Tr

�
jαG

RjβG
A
�
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• Surface experiments (ARPES, 
STM)

• Surface states : Odd number 
of Dirac cones

3D Strong topological insulators

5.2. Boltzmann equation

Figure 5.2: Left : ARPES data showing the linear dispersion of the topological
insulator surface states labeled SSB, BVB and BCB being the bulk bands [58].
Right : ARPES data showing the Fermi surface of topological insulator surface
state, with projection of the spin in red arrows for every direction [93].

quantity averaged over many realization of the disorder (e.g. different sam-
ples). In our model, we define the zero of energies such that �V (�r)� = 0,
and the second cumulant can be written as �V (�r)V (�r�)� = γδ(�r − �r�). This
value of the second-cumulant shows that we do not consider any correlation
in space between different scattering events, this is why this model is called
uncorrelated gaussian disorder. This corresponds to localized scatterers cen-
ters. Besides its simplicity in calculations, this model is useful in the sense
that it is a limit of dilute impurities at concentration nimp at positions �ri with
a potential v0δ(�r − �ri), when the density goes to infinity keeping nimpv20 = γ
constant [31].

5.2 Boltzmann equation

5.2.1 Hamiltonian diagonalization, density of states

Starting from the kinetic hamiltonian given before one has :

H = �vF (kxσx + kyσ
y) =

�
0 �vFk−

�vFk+ 0

�
, (5.3)

where k± = kx ± iky.
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Figure 2 | Transverse-momentum kz dependence of Dirac bands near �. a, The energy dispersion data along the �–M cut, measured with the photon

energy of 21 eV (corresponding to 0.3 k-space length along �–Z � kz), 19 eV (�) and 31 eV (−0.4 k-space length along �–Z of the bulk three-dimensional �

BZ) are shown. Although the bands below −0.4 eV binding energy show strong kz dependence, the linearly dispersive Dirac-like bands and the U-shaped

broad feature show weaker kz dispersion. The Dirac point is observed to lie inside the bulk bandgap. A careful look at the individual curves reveals some kz
dependence of the U-shaped continuum (see b for details). b, The energy distribution curves obtained from the normal-emission spectra measured using

15–31 eV photon energies reveal two dispersive bulk bands below −0.3 eV (blue dotted lines). This is in addition to the two non-dispersive peaks from the

Dirac-cone bands inside the gap. The Dirac band intensity is strongly modulated by the photon energy changes due to the matrix-element effects (which is

also observed in BiSb; ref. 5). c, A k-space map of locations in the bulk three-dimensional BZ scanned by the detector at different photon energies over a

theta (θ) range of ±30
◦
. This map (kz, ky , Ephoton) was used to explore the kz dependence of the observed bands.

at particular high-symmetry points—the Kramers points on the

surface BZ. In our calculations, the SSs (red dotted lines) are doubly

degenerate only at � (Fig. 1f). This is generally true for all known

spin–orbit-coupled material surfaces such as gold
25,26

or Bi1−xSbx
(ref. 5). In Bi2Se3, the SSs emerge from the bulk continuum, cross

each other at �, pass through the Fermi level (EF) and eventually

merge with the bulk conduction-band continuum, ensuring that

at least one continuous band-thread traverses the bulk bandgap

between a pair of Kramers points. Our calculated result shows that

no surface band crosses the Fermi level if SOC is not included in

the calculation, and only with the inclusion of the realistic values

of SOC (based on atomic Bi) does the calculated spectrum show

singly degenerate gapless surface bands that are guaranteed to cross

the Fermi level. The calculated band topology with realistic SOC

leads to a single ring-like surface FS, which is singly degenerate

so long as the chemical potential is inside the bulk bandgap. This

topology is consistent with the Z2 = −1 class in the Fu–Kane–Mele

classification scheme
7
.

A global agreement between the experimental band structure

(Fig. 1a–c) and our theoretical calculation (Fig. 1f) is obtained by

considering a rigid shift of the chemical potential by about 200meV

with respect to our calculated band structure (Fig. 1f) of the formula

compound Bi2Se3. The experimental sign of this rigid shift (the

raised chemical potential) corresponds to an electron doping of the

Bi2Se3 insulating formulamatrix (see Supplementary Information).

This is consistent with the fact that naturally grown Bi2Se3

semiconductor used in our experiment is n-type, as independently

confirmed by our transport measurements. The natural doping of

this material, in fact, comes as an advantage in determining the

topological class of the corresponding undoped insulator matrix,

because we would like to image the SSs not only below the Fermi

level but also above it, to examine the way surface bands connect to

the bulk conduction band across the gap. A unique determination

of the surface band topology of purely insulating Bi1−xSbx (refs 5,

6) was clarified only on doping with a foreign element, Te. In our

experimental data on Bi2Se3, we observe a V-shaped pure SS band

to be dispersing towards EF, which is in good agreement with our

calculations.More remarkably, the experimental band velocities are

also close to our calculated values. By comparison with calculations

combined with a general set of arguments presented above, this

V-shaped band is singly degenerate. Inside this ‘V’ band, an

electron-pocket-like U-shaped continuum is observed to be present

near the Fermi level. This filled U-shaped broad feature is in close

correspondence to the bottom part of the calculated conduction-

band continuum (Fig. 1f). Considering the n-type character of the

naturally occurring Bi2Se3 and by correspondence to our band

calculation, we assign the broad feature to correspond roughly to

the bottom of the conduction band.

To systematically investigate the nature of all the band features

imaged in our data, we have carried out a detailed photon-energy-

dependence study, of which selected data sets are presented in

Fig. 2a,b. A modulation of incident photon energy enables us to

probe the kz dependence of the bands sampled in an ARPES

study (Fig. 2c), allowing for a way to distinguish surface from bulk

contributions to a particular photoemission signal
5
. Our photon-

energy study did not indicate a strong kz dispersion of the lowest-

lying energy bands on the ‘U’, although the full continuum does

have some dispersion (Fig. 2). Some variation of the quasiparticle

intensity near EF is, however, observed owing to the variation of

the electron–photon matrix element. In light of the kz -dependence
study (Fig. 2b), if the features above −0.15 eV were purely due

to the bulk, we would expect to observe dispersion as kz moved

away from the �-point. The lack of strong dispersion yet close

one-to-one correspondence to the calculated bulk band structure

suggests that the inner electron pocket continuum features are

probably a mixture of surface-projected conduction-band states,

which also includes some band-bending effects near the surface and

the full continuum of bulk conduction-band states sampled from a

few layers beneath the surface. Similar behaviour is also observed in

the ARPES study of other semiconductors
27
. In our kz -dependent

study of the bands (Fig. 2b) we also observe two bands dispersing in

kz that have energies below −0.3 eV (blue dotted bands), reflecting

the bulk valence bands, in addition to two other non-dispersive

features associated with the two sides of the pure SS Dirac bands.

The red curve is measured right at the �-point, which suggests that

the Dirac point lies inside the bulk bandgap. Taking the bottom of

the ‘U’ band as the bulk conduction-band minimum, we estimate

that a bandgap of about 0.3 eV is realized in the bulk of the undoped

material. Our ARPES estimated bandgap is in good agreement with

the value deduced from bulk physical measurements
23

and from
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locked due to Z2 topology. This is most clearly seen in the spin-
resolved spectra (Iy

",#; Fig. 1g), which are calculated from Py accord-
ing to Iy

"5 Itot(11Py)/2 and Iy
#5 Itot(12 Py)/2, where Itot is the

spin-averaged intensity. To extract the spin polarization vectors of
the forward (1kx) and backward (2kx) moving electrons, we
performed a standard numerical fit (Supplementary Informa-
tion)21. The fit results yield 100(615)% polarized (Fig. 1h) spins that
point along the (k3 z) direction, which is consistent with its topo-
logical spin–orbit coupling origin14,21. Spin-momentum locking is
the key to topological order in a topological insulator which cannot
be demonstrated without spin sensitive detection. Therefore the
existence of the topological insulator state was not established in
previous work on Bi2X3. Our combined observations of a spin–orbit
origin linear dispersion relation and a one-to-one locking of
momentum and spin directions allow us to conclude that the surface
electrons of Bi2X3 (X5Se, Te) are helical Dirac fermions of Z2

topological-order origin (Fig. 1).
To experimentally access these helical Dirac fermions for research-

device applications, the electronic structuremust be in the topological
transport regime where there is zero charge fermion density7–9.
This regime occurs when EF lies in between the bulk valence band
maximum (VBM) and the bulk conduction band minimum (CBM),
and exactly at the surface or edge Dirac point, which should in turn lie
at a Kramers time-reversal invariant momentum3,4. This is clearly not
the case in either Bi2Te3, Bi2(Sn)Te3, Bi2Se3 or graphene. Although
pure Bi2X3 are expected to be undoped semiconductors20,22,23,
nominally stoichiometric samples are well known to be n- and p-type
semiconductors owing to excess carriers introduced via Se or Te site
defects, respectively16,17. To compensate for the unwanted defect
dopants, trace amounts of carriers of the opposite sign must be added
into the naturally occurring material, which may be easier to achieve
in Bi2Se3 than in Bi2Te3 because the former has a much larger
bandgap15,24 (around 0.35 eV (ref. 25) compared to 0.18 eV (ref. 26),
respectively). To lower the EF of Bi2Se3 into the bulk bandgap, we

substituted trace amounts of Ca21 for Bi31 in as-grown Bi2Se3, where
Ca has been previously shown16 to act as a hole donor by scanning
tunnelling microscopy and thermoelectric transport studies16.
Figure 2a shows that as the Ca concentration increases from 0% to
0.5%, the low temperature resistivity sharply peaks at 0.25%, which
suggests that the system undergoes a metal to insulator to metal trans-
ition. The resistivity peak occurs at a Ca concentration where a change
in signof theHall carrier density also is observed (Fig. 2b),which shows
that formeasuredCa concentrations below and above 0.25%, electrical
conduction is supported by electron and hole carriers, respectively.

We performed systematic time-dependent ARPES measurements
to study the electronic structure evolution of Bi22dCadSe3 as a func-
tion of Ca doping in order to gain insight into the trends observed in
transport (Fig. 2a and b). Early time ARPES energy dispersion maps
taken through the !CC point of the (111) surface Brillouin zone are
displayed in Fig. 2c–h for several Ca doping levels. In the as-grown
(d5 0) Bi2Se3 samples, a single surface Dirac cone is observed with EF
lying nearly 0.3 eV above the Dirac node forming an electron Fermi
surface. We also observe that EF intersects the electron-like bulk
conduction band. When a 0.25% concentration of Ca is introduced,
EF is dramatically lowered to lie near the Dirac node (Fig. 2d), which
is consistent with Ca acting as a highly effective hole donor. Because
the bulk CBM lies at a binding energy of approximately20.1 eV for
d5 0 (Fig. 2c), a 0.3 eV shift in EF between d5 0 and d5 0.0025
suggests that for d5 0.0025, EF is located 0.2 eV below the CBM.
This is consistent with EF being in the bulk bandgap, because the
indirect energy gap between the CBM and the VBM is known from
both tunnelling24 and optical25 data and theory22 to be nearly 0.35 eV.

As the Ca concentration is increased further, the position of EF
continues a downward trend such that by d5 0.01, it is located
clearly below the Dirac node (Fig. 2) and intersects the hole-like bulk
valence band. The systematic lowering of EF with increasing d in
Bi22dCadSe3 observed in early time ARPES measurements
(Fig. 2i–k), which reflect the electronic structure of the sample bulk,
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Figure 1 | Detection of spin-momentum locking of spin-helical Dirac
electrons in Bi2Se3 and Bi2Te3 using spin-resolved ARPES. a, b, ARPES
intensity map at EF of the (111) surface of tuned stoichiometric Bi22dCadSe3
(a; see text) and of Bi2Te3 (b). Red arrows denote the direction of spin
projection around the Fermi surface. c, d, ARPES dispersion of tuned
Bi22dCadSe3 (c) and Bi2Te3 (d) along the kx cut. The dotted red lines are
guides to the eye. The shaded regions in c and d are our projections of the
bulk bands of pure Bi2Se3 and Bi2Te3, respectively, onto the (111) surface.
e, Measured y component of spin-polarization along the !CC{ !MM direction at
EB5220meV, which only cuts through the surface states. Inset, schematic
of the cut direction. f, Measured x (red triangles) and z (black circles)
components of spin-polarization along the !CC{ !MM direction at

EB5220meV. Error bars in e and f denote the standard deviation of Px,y,z
where typical detector counts reach 53 105; solid lines are numerical fits21.
g, Spin-resolved spectra obtained from the y component spin polarization
data. The non-Lorentzian lineshape of the Iy

" and Iy
# curves and their non-

exact merger at large |kx | is due to the time evolution of the surface band
dispersion, which is the dominant source of statistical uncertainty. a.u.,
arbitrary units. h, Fitted values of the spin polarization vector P (Sx,Sy,Sz) are
(sin90ucos295u, sin90usin295u, cos90u) for electrons with 1kx and
(sin86ucos85u, sin86usin85u, cos86u) for electrons with 2kx, which
demonstrates the topological helicity of the spin-Dirac cone. The angular
uncertainties are of the order of 610u and the magnitude uncertainty is of
the order of 60.15.
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locked due to Z2 topology. This is most clearly seen in the spin-
resolved spectra (Iy

",#; Fig. 1g), which are calculated from Py accord-
ing to Iy

"5 Itot(11Py)/2 and Iy
#5 Itot(12 Py)/2, where Itot is the

spin-averaged intensity. To extract the spin polarization vectors of
the forward (1kx) and backward (2kx) moving electrons, we
performed a standard numerical fit (Supplementary Informa-
tion)21. The fit results yield 100(615)% polarized (Fig. 1h) spins that
point along the (k3 z) direction, which is consistent with its topo-
logical spin–orbit coupling origin14,21. Spin-momentum locking is
the key to topological order in a topological insulator which cannot
be demonstrated without spin sensitive detection. Therefore the
existence of the topological insulator state was not established in
previous work on Bi2X3. Our combined observations of a spin–orbit
origin linear dispersion relation and a one-to-one locking of
momentum and spin directions allow us to conclude that the surface
electrons of Bi2X3 (X5Se, Te) are helical Dirac fermions of Z2

topological-order origin (Fig. 1).
To experimentally access these helical Dirac fermions for research-

device applications, the electronic structuremust be in the topological
transport regime where there is zero charge fermion density7–9.
This regime occurs when EF lies in between the bulk valence band
maximum (VBM) and the bulk conduction band minimum (CBM),
and exactly at the surface or edge Dirac point, which should in turn lie
at a Kramers time-reversal invariant momentum3,4. This is clearly not
the case in either Bi2Te3, Bi2(Sn)Te3, Bi2Se3 or graphene. Although
pure Bi2X3 are expected to be undoped semiconductors20,22,23,
nominally stoichiometric samples are well known to be n- and p-type
semiconductors owing to excess carriers introduced via Se or Te site
defects, respectively16,17. To compensate for the unwanted defect
dopants, trace amounts of carriers of the opposite sign must be added
into the naturally occurring material, which may be easier to achieve
in Bi2Se3 than in Bi2Te3 because the former has a much larger
bandgap15,24 (around 0.35 eV (ref. 25) compared to 0.18 eV (ref. 26),
respectively). To lower the EF of Bi2Se3 into the bulk bandgap, we

substituted trace amounts of Ca21 for Bi31 in as-grown Bi2Se3, where
Ca has been previously shown16 to act as a hole donor by scanning
tunnelling microscopy and thermoelectric transport studies16.
Figure 2a shows that as the Ca concentration increases from 0% to
0.5%, the low temperature resistivity sharply peaks at 0.25%, which
suggests that the system undergoes a metal to insulator to metal trans-
ition. The resistivity peak occurs at a Ca concentration where a change
in signof theHall carrier density also is observed (Fig. 2b),which shows
that formeasuredCa concentrations below and above 0.25%, electrical
conduction is supported by electron and hole carriers, respectively.

We performed systematic time-dependent ARPES measurements
to study the electronic structure evolution of Bi22dCadSe3 as a func-
tion of Ca doping in order to gain insight into the trends observed in
transport (Fig. 2a and b). Early time ARPES energy dispersion maps
taken through the !CC point of the (111) surface Brillouin zone are
displayed in Fig. 2c–h for several Ca doping levels. In the as-grown
(d5 0) Bi2Se3 samples, a single surface Dirac cone is observed with EF
lying nearly 0.3 eV above the Dirac node forming an electron Fermi
surface. We also observe that EF intersects the electron-like bulk
conduction band. When a 0.25% concentration of Ca is introduced,
EF is dramatically lowered to lie near the Dirac node (Fig. 2d), which
is consistent with Ca acting as a highly effective hole donor. Because
the bulk CBM lies at a binding energy of approximately20.1 eV for
d5 0 (Fig. 2c), a 0.3 eV shift in EF between d5 0 and d5 0.0025
suggests that for d5 0.0025, EF is located 0.2 eV below the CBM.
This is consistent with EF being in the bulk bandgap, because the
indirect energy gap between the CBM and the VBM is known from
both tunnelling24 and optical25 data and theory22 to be nearly 0.35 eV.

As the Ca concentration is increased further, the position of EF
continues a downward trend such that by d5 0.01, it is located
clearly below the Dirac node (Fig. 2) and intersects the hole-like bulk
valence band. The systematic lowering of EF with increasing d in
Bi22dCadSe3 observed in early time ARPES measurements
(Fig. 2i–k), which reflect the electronic structure of the sample bulk,
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Figure 1 | Detection of spin-momentum locking of spin-helical Dirac
electrons in Bi2Se3 and Bi2Te3 using spin-resolved ARPES. a, b, ARPES
intensity map at EF of the (111) surface of tuned stoichiometric Bi22dCadSe3
(a; see text) and of Bi2Te3 (b). Red arrows denote the direction of spin
projection around the Fermi surface. c, d, ARPES dispersion of tuned
Bi22dCadSe3 (c) and Bi2Te3 (d) along the kx cut. The dotted red lines are
guides to the eye. The shaded regions in c and d are our projections of the
bulk bands of pure Bi2Se3 and Bi2Te3, respectively, onto the (111) surface.
e, Measured y component of spin-polarization along the !CC{ !MM direction at
EB5220meV, which only cuts through the surface states. Inset, schematic
of the cut direction. f, Measured x (red triangles) and z (black circles)
components of spin-polarization along the !CC{ !MM direction at

EB5220meV. Error bars in e and f denote the standard deviation of Px,y,z
where typical detector counts reach 53 105; solid lines are numerical fits21.
g, Spin-resolved spectra obtained from the y component spin polarization
data. The non-Lorentzian lineshape of the Iy

" and Iy
# curves and their non-

exact merger at large |kx | is due to the time evolution of the surface band
dispersion, which is the dominant source of statistical uncertainty. a.u.,
arbitrary units. h, Fitted values of the spin polarization vector P (Sx,Sy,Sz) are
(sin90ucos295u, sin90usin295u, cos90u) for electrons with 1kx and
(sin86ucos85u, sin86usin85u, cos86u) for electrons with 2kx, which
demonstrates the topological helicity of the spin-Dirac cone. The angular
uncertainties are of the order of 610u and the magnitude uncertainty is of
the order of 60.15.
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locked due to Z2 topology. This is most clearly seen in the spin-
resolved spectra (Iy

",#; Fig. 1g), which are calculated from Py accord-
ing to Iy

"5 Itot(11Py)/2 and Iy
#5 Itot(12 Py)/2, where Itot is the

spin-averaged intensity. To extract the spin polarization vectors of
the forward (1kx) and backward (2kx) moving electrons, we
performed a standard numerical fit (Supplementary Informa-
tion)21. The fit results yield 100(615)% polarized (Fig. 1h) spins that
point along the (k3 z) direction, which is consistent with its topo-
logical spin–orbit coupling origin14,21. Spin-momentum locking is
the key to topological order in a topological insulator which cannot
be demonstrated without spin sensitive detection. Therefore the
existence of the topological insulator state was not established in
previous work on Bi2X3. Our combined observations of a spin–orbit
origin linear dispersion relation and a one-to-one locking of
momentum and spin directions allow us to conclude that the surface
electrons of Bi2X3 (X5Se, Te) are helical Dirac fermions of Z2

topological-order origin (Fig. 1).
To experimentally access these helical Dirac fermions for research-

device applications, the electronic structuremust be in the topological
transport regime where there is zero charge fermion density7–9.
This regime occurs when EF lies in between the bulk valence band
maximum (VBM) and the bulk conduction band minimum (CBM),
and exactly at the surface or edge Dirac point, which should in turn lie
at a Kramers time-reversal invariant momentum3,4. This is clearly not
the case in either Bi2Te3, Bi2(Sn)Te3, Bi2Se3 or graphene. Although
pure Bi2X3 are expected to be undoped semiconductors20,22,23,
nominally stoichiometric samples are well known to be n- and p-type
semiconductors owing to excess carriers introduced via Se or Te site
defects, respectively16,17. To compensate for the unwanted defect
dopants, trace amounts of carriers of the opposite sign must be added
into the naturally occurring material, which may be easier to achieve
in Bi2Se3 than in Bi2Te3 because the former has a much larger
bandgap15,24 (around 0.35 eV (ref. 25) compared to 0.18 eV (ref. 26),
respectively). To lower the EF of Bi2Se3 into the bulk bandgap, we

substituted trace amounts of Ca21 for Bi31 in as-grown Bi2Se3, where
Ca has been previously shown16 to act as a hole donor by scanning
tunnelling microscopy and thermoelectric transport studies16.
Figure 2a shows that as the Ca concentration increases from 0% to
0.5%, the low temperature resistivity sharply peaks at 0.25%, which
suggests that the system undergoes a metal to insulator to metal trans-
ition. The resistivity peak occurs at a Ca concentration where a change
in signof theHall carrier density also is observed (Fig. 2b),which shows
that formeasuredCa concentrations below and above 0.25%, electrical
conduction is supported by electron and hole carriers, respectively.

We performed systematic time-dependent ARPES measurements
to study the electronic structure evolution of Bi22dCadSe3 as a func-
tion of Ca doping in order to gain insight into the trends observed in
transport (Fig. 2a and b). Early time ARPES energy dispersion maps
taken through the !CC point of the (111) surface Brillouin zone are
displayed in Fig. 2c–h for several Ca doping levels. In the as-grown
(d5 0) Bi2Se3 samples, a single surface Dirac cone is observed with EF
lying nearly 0.3 eV above the Dirac node forming an electron Fermi
surface. We also observe that EF intersects the electron-like bulk
conduction band. When a 0.25% concentration of Ca is introduced,
EF is dramatically lowered to lie near the Dirac node (Fig. 2d), which
is consistent with Ca acting as a highly effective hole donor. Because
the bulk CBM lies at a binding energy of approximately20.1 eV for
d5 0 (Fig. 2c), a 0.3 eV shift in EF between d5 0 and d5 0.0025
suggests that for d5 0.0025, EF is located 0.2 eV below the CBM.
This is consistent with EF being in the bulk bandgap, because the
indirect energy gap between the CBM and the VBM is known from
both tunnelling24 and optical25 data and theory22 to be nearly 0.35 eV.

As the Ca concentration is increased further, the position of EF
continues a downward trend such that by d5 0.01, it is located
clearly below the Dirac node (Fig. 2) and intersects the hole-like bulk
valence band. The systematic lowering of EF with increasing d in
Bi22dCadSe3 observed in early time ARPES measurements
(Fig. 2i–k), which reflect the electronic structure of the sample bulk,
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Figure 1 | Detection of spin-momentum locking of spin-helical Dirac
electrons in Bi2Se3 and Bi2Te3 using spin-resolved ARPES. a, b, ARPES
intensity map at EF of the (111) surface of tuned stoichiometric Bi22dCadSe3
(a; see text) and of Bi2Te3 (b). Red arrows denote the direction of spin
projection around the Fermi surface. c, d, ARPES dispersion of tuned
Bi22dCadSe3 (c) and Bi2Te3 (d) along the kx cut. The dotted red lines are
guides to the eye. The shaded regions in c and d are our projections of the
bulk bands of pure Bi2Se3 and Bi2Te3, respectively, onto the (111) surface.
e, Measured y component of spin-polarization along the !CC{ !MM direction at
EB5220meV, which only cuts through the surface states. Inset, schematic
of the cut direction. f, Measured x (red triangles) and z (black circles)
components of spin-polarization along the !CC{ !MM direction at

EB5220meV. Error bars in e and f denote the standard deviation of Px,y,z
where typical detector counts reach 53 105; solid lines are numerical fits21.
g, Spin-resolved spectra obtained from the y component spin polarization
data. The non-Lorentzian lineshape of the Iy

" and Iy
# curves and their non-

exact merger at large |kx | is due to the time evolution of the surface band
dispersion, which is the dominant source of statistical uncertainty. a.u.,
arbitrary units. h, Fitted values of the spin polarization vector P (Sx,Sy,Sz) are
(sin90ucos295u, sin90usin295u, cos90u) for electrons with 1kx and
(sin86ucos85u, sin86usin85u, cos86u) for electrons with 2kx, which
demonstrates the topological helicity of the spin-Dirac cone. The angular
uncertainties are of the order of 610u and the magnitude uncertainty is of
the order of 60.15.
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Figure 3.7: ARPES experiments results for Bi2Se3 and Bi2Te3. The top left[55]

shows the dispersion relation of Bi2Se3 along one direction ; the brightest areas

being the bulk contribution. We can check the linear dispersion of the surface

state. Top right : the same results apply for Bi2Te3. The grey ares correspond

to bulk states[56]. Bottom : the winding of the spin projection around the

Fermi surface, left for doped Bi2Se3, right for Bi2Te3[56].

STM experiment, a conducting tip is used to scan a surface, when a voltage

bias is applied between the tip and the surface to characterize : electrons can

tunnel from the tip to the surface. The tunneling probability is a function of

the distance of the tip from the surface, the applied voltage and of the local

density of states of the sample, so this method can be used to measure the

latest.

The first comparison between ARPES and STM experiments was done

in Bi2Te3 [14][57], and the integrated density of states derived from ARPES

experiment are in good agreement with the STM measurements (cf Fig. 3.8).

3.1.3.3 Hexagonal warping of the surface state

We can also notice in the inset of the left figure of Fig.3.8 that there is a

deviation of the surface state dispersion from the expected linear behavior.

This was seen in ARPES experiments [58], with sections of the conic dispersion

at different energies : the Fermi surface evolves from a pure circle to a hexagon

and to a snowflake-like shape when the Fermi energy is increased away from

the Dirac point.
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3. Experimental realizations

on the electron system6 and inverted bands at an odd number of high-
symmetry points in their bulk 3D Brillouin zones, are predicted to
exhibit an odd number of surface state crossings, precluding their
adiabatic continuation to the atomic insulator3,7–13. Such ‘topological
metals’9–11 cannot be realized in a purely 2D electron gas system.

In our experimental case, namely the (111) surface of Bi0.9Sb0.1, the
four time-reversal-invariant momenta are located at !CC and three !MM-
points that are rotated by 60u relative to one another. Owing to the
three-fold crystal symmetry (A7 bulk structure) and the observed
mirror symmetry of the surface Fermi surface across kx5 0 (Fig. 2),
these three !MM-points are equivalent (and we henceforth refer to them
as a single point, !MM). The mirror symmetry (E(ky)5 E(2ky)) is also
expected, from time-reversal invariance exhibited by the system. The
complete details of the surface state dispersion observed in our
experiments along a path connecting !CC and !MM are shown in Fig. 3a;
finding this information is made possible by our experimental sepa-
ration of surface states from bulk states. As for bismuth, two surface

bands emerge from the bulk band continuum near !CC to form a
central electron pocket and an adjacent hole lobe25–27. It has been
established that these two bands result from the spin-splitting of a
surface state and are thus singly degenerate27,28.

On the other hand, the surface band that crosses EF at
2kx< 0.5 Å21, and forms the narrow electron pocket around !MM, is
clearly doubly degenerate, as far as we can determine within our
experimental resolution. This is indicated by its splitting below EF
between 2kx< 0.55 Å21 and !MM, as well as the fact that this splitting
goes to zero at !MM in accordance with Kramers’ theorem. In semime-
tallic single-crystal bismuth, only a single surface band is observed to
form the electron pocket around !MM (refs 29 and 30). Moreover, this
surface state overlaps, and hence becomes degenerate with, the bulk
conduction band at L (L projects to the surface point !MM) owing to the
semimetallic character of bismuth (Fig. 3b). In Bi0.9Sb0.1, on the other
hand, the states near !MM fall completely inside the bulk energy gap,
preserving their purely surface character at !MM (Fig. 3a). The surface

M

M

Γ

Γ

x = 0
x = 0.1

×80

T

T

La

Semimetal

c

M

1

2

x = 0.1

1

2

M

e

g

i

d

f

h

4,5

1 2 3 4,5

0.0

0 100
T (K)

R
es

is
tiv

ity
 (m

Ω
 c

m
)

200 300

0.2 0.4 0.6 0.8 1.0

Insulator

Dirac insulator with
topological Hall states

Bi Bi0.9Sbx = 0.1

Ls La

Ls

–0.1 0.0–0.2

0.0

–0.1

8

6

4

2

0

a 0.1

–kx (Å–1)

E B
 (e

V)

EB (eV)

E B
 (e

V)
k y

 (Å
–1

)
E B

 (e
V)

E B
 (a

rb
itr

ar
y 

un
its

)

In
te

ns
ity

 (a
rb

itr
ar

y 
un

its
)

In
te

n s
ity

 (a
rb

itr
ar

y 
un

its
)

b

0.6 1.00.8 0.00–0.04–0.08

0.00

–0.04

–0.08

0.0–0.1–0.20.80.6 1.0

0.80.6 1.0

0.00

0.06

–0.06

0.04

0.0

–0.1

–0.2

–kx (Å–1) EB (eV)

Topological Hall insulator

Figure 3 | The topological gapless surface states in bulk insulating
Bi0.9Sb0.1. a, The surface-band-dispersion second-derivative image of
Bi0.9Sb0.1 along !CC{ !MM. The shaded white area shows the projection of the
bulk bands based on ARPES data, as well as a rigid shift of the tight binding
bands to sketch the unoccupied bands above the Fermi level. A non-intrinsic
flat band of intensity near EF generated by analysis of the second-derivative
image was rejected to isolate the intrinsic dispersion. The Fermi crossings of
the surface state are denoted by yellow circles, with the band near
2kx< 0.5 Å21 counted twice owing to double degeneracy. The red lines are
guides to the eye. An in-plane rotation of the sample by 60u produced the
same surface state dispersion. The EDCs along !CC{ !MM are shown in the right-
hand diagram. There are a total of five crossings between !CC and !MM, which
indicates that these surface states are topologically non-trivial. The number
of surface state crossings in a material (with an odd number of Dirac points)
is related to the topological Z2 invariant (see text). b, The resistivity curves of
Bi and Bi0.9Sb0.1 reflect the contrasting transport behaviours. The presented
resistivity curve for pure bismuth has been multiplied by a factor of 80 for
clarity. c, Schematic variation of bulk band energies of Bi12xSbx as a

function of x (based on band calculations and on refs 7 and 17). Bi0.9Sb0.1 is a
direct-gap bulk Dirac point insulator well inside the inverted-band regime,
and its surface forms a ‘topological metal’—the 2D analogue of the one-
dimensional edge states in quantum spin Hall systems. d, ARPES intensity
integrated within 610meV of EF originating solely from the surface state
crossings. The image was plotted by stacking along the negative kx-direction
a series of scans taken parallel to the ky-direction. e, Outline of the Bi0.9Sb0.1
surface state ARPES intensity near EF measured in d. White lines show the
scan directions ‘1’ and ‘2’. f, Surface band dispersion along direction ‘1’ taken
with hn5 28 eV, and the corresponding EDCs (g). The surface Kramers
degenerate point, critical in determining the topological Z2 class of a band
insulator, is clearly seen at !MM, approximately 156 5meVbelow EF. (We note
that the scans are taken along the negative kx-direction, away from the bulk
L-point.) h, Surface band dispersion along direction ‘2’ taken with
hn5 28 eV, and the corresponding EDCs (i). This scan no longer passes
through the !MM-point, and the observation of two well-separated bands
indicates the absence of Kramers degeneracy as expected, which
corroborates the result in a.
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Figure 3.5: ARPES experiment showing the presence of 5 surface states in
Bi1−xSbx. The white stripes correspond to the bulk bands.

possibly a larger gap. It was shown[11] that a family of compounds (Bi2Se3,
Bi2Te3 and Sb2Te3) presents a unique surface state. Moreover, the fact that
they are stoichiometric compounds, instead of an alloy in the case of Bi1−xSbx

allows a growth with higher purity. Simulations of the expected dispersions in
these materials are plotted in Fig. 3.6.NATURE PHYSICS DOI: 10.1038/NPHYS1270 ARTICLES
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be carried out on the other three materials, from which we see that
Sb2Te3 and Bi2Te3 are qualitatively the same as Bi2Se3, whereas the
SOCof Sb2Te3 is not strong enough to induce such an inversion.

Topological surface states
The existence of topological surface states is one of the most
important properties of the topological insulators. To see the
topological features of the four systems explicitly, we calculate the
surface states of these four systems on the basis of an ab initio
calculation. First we construct the maximally localized Wannier
function (MLWF) from the ab initio calculation using the method
developed by Marzari and co-workers21,22. We divide the semi-
infinite system into a surface slab with finite thickness and the
remaining part as the bulk. The MLWF hopping parameters for the
bulk part can be constructed from the bulk ab initio calculation, and
the ones for the surface slab can be constructed from the ab initio
calculation of the slab, in which the surface correction to the lattice
constants and band structure have been considered self-consistently
and the chemical potential is determined by the charge neutrality
condition.With these bulk and surfaceMLWFhopping parameters,
we use an iterative method23,24 to obtain the surface Green’s
function of the semi-infinite system. The imaginary part of the
surface Green’s function is the local density of states (LDOS), from
which we can obtain the dispersion of the surface states. The surface
LDOSon the [111] surface for all four systems is shown in Fig. 4. For
Sb2Te3, Bi2Se3 andBi2Te3, one can clearly see the topological surface
states that form a single Dirac cone at the � point. In comparison,
Sb2Se3 has no surface state and is a topologically trivial insulator.
Thus, the surface-state calculation agrees well with the bulk parity
analysis, and confirms conclusively the topologically non-trivial
nature of the three materials. For Bi2Se3, the Fermi velocity of the
topological surface states is vF � 5.0×105 m s−1, which is similar to
that of the other two materials.

Low-energy effective model
As the topological nature is determined by the physics near the �
point, it is possible to write down a simple effective Hamiltonian

to characterize the low-energy long-wavelength properties of
the system. Starting from the four low-lying states |P1+

z ,↑ (↓)�
and |P2−

z ,↑ (↓)� at the � point, such a Hamiltonian can be
constructed by the theory of invariants25 for the finite wave
vector k. On the basis of the symmetries of the system, the
generic form of the 4× 4 effective Hamiltonian can be written
down up to the order of O(k2), and the tunable parameters in
the Hamiltonian can be obtained by fitting the band structure
of our ab initio calculation. The important symmetries of the
system are time-reversal symmetry T , inversion symmetry I and
three-fold rotation symmetry C3 along the z axis. In the basis of
(|P1+

z ,↑�, |P2−
z ,↑�, |P1+

z ,↓�, |P2−
z ,↓�), the representation of the

symmetry operations is given by T = K · iσ y ⊗ I2×2, I = I2×2 ⊗ τ3
andC3 = exp(i(π/3)σ z ⊗I2×2), whereK is the complex conjugation
operator, σ x,y,z and τ x,y,z denote the Pauli matrices in the spin and
orbital space, respectively. By requiring these three symmetries and
keeping only the terms up to quadratic order in k, we obtain the
following generic form of the effective Hamiltonian:

H (k) = �0(k)I4×4 +





M(k) A1kz 0 A2k−
A1kz −M(k) A2k− 0
0 A2k+ M(k) −A1kz

A2k+ 0 −A1kz −M(k)





+ o(k2) (1)

with k± = kx ± iky , �0(k)= C +D1k2z +D2k2⊥ and M(k)=M −B1
k2z − B2k2⊥. By fitting the energy spectrum of the effective
Hamiltonian with that of the ab initio calculation, the parameters
in the effective model can be determined. For Bi2Se3, our fitting
leads to M = 0.28 eV, A1 = 2.2 eVÅ, A2 = 4.1 eVÅ, B1 = 10 eVÅ2,
B2 = 56.6 eVÅ2, C = −0.0068 eV, D1 = 1.3 eVÅ2, D2 = 19.6 eVÅ2.
Except for the identity term �0(k), the Hamiltonian (1) is
nothing but the 3D Dirac model with uniaxial anisotropy along
the z-direction and k-dependent mass terms. From the fact
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Figure 3.6: Dispersion relation from ab initio calculations for the Bi2Se3 family
of compounds, showing that three of them are topological insulators with a
single surface state[11].

These works also demonstrated that these surface states obey a linear dis-
persion relation as expected : because of the strong spin-orbit coupling, the
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• Residual bulk conductance

• Thin films : improve surface/bulk ratio, 
gating both surfaces

• Strained HgTe : no bulk conductance

• Magneto-transport : weak anti-localization

3DTI  Transport experiments

3

perimentally plotted in Fig. 3 are derived by inverting
the measured resistivity tensor (ρxx, ρxy) and expressing
the data in units of e2/h [see a flash animation in the
supplementary-material-c]. Fits to the two fluid model
σD
xx + σ0 and σD

xy, shown as dotted lines, are found to be
quite accurate for all gate voltages. The residual differ-
ences between the data and fits is attributed below to the
quantum corrections to the conductivity (antilocalization
shown in Fig. 4).

A qualitative discussion of the data sheds some light on
the origins of the parallel conduction σ0. At Vg ≈ 1.75V
(≈ 1V above Vg0), the maximum of the Hall magneto-
conductance occurs at B=0.6 T. In Eq. 2 this maximum
is at B∗ = 2eD/µ(Vg) where the Hall conductance equals
kF #e/2. Since B∗ and kF #e fully specify the Dirac magne-
toconductance, the value of σ0, the parallel conductance,
is found to be of order one in units of e2/h. The value
of σ0 varies little above Vg0 but increases linearly in the
hole region up-to ≈ 4.5e2/h@ Vg = −2V. In this region,
σ0 measures the gradual population of the bulk heavy
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FIG. 3: Longitudinal σxx and Hall σxy magnetoconductance
expressed in units of e2/h. The solid lines are obtained by in-
verting the measured resistivity tensor (ρxx, ρxy) and rescal-
ing in units of e2/h. The dashed lines are obtained by fitting
the experimental curves to σD

xx + σ0 and σD
xy . The difference

between the experimental curves and the fit are analyzed in
terms of the quantum correction to the conductivity (weak-
antilocalization) in Figure 4.
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FIG. 4: The quantum correction to the conductivity are ob-
tained by subtracting the two-fluid fit to the measured longi-
tudinal conductivity. The difference are plotted as a function
of magnetic field for different temperatures. The curves are
fitted to the expected digamma dependence as a function of
field. The characteristic field is Bi = 40 mT at T=1.5 K and
increases with increasing temperature. Beyond Bi, the fitted
curves (dotted lines) are dominated by the logarithmic tails
expected in 2D.

hole subbands. The non-zero Vg-independent value of
σ0 found in the gap region is more surprising. In this
experiment, the transport is measured by contacting the
top face of the HgTe slab. The sample has identical bar-
riers on the top and bottom faces: the latter conduction
is also expected to be dominated by 2D-Dirac carriers.
Based on high field data,[14] we know that two faces are
indeed connected through a 2̃5 kΩ series-resistance[20],
which explains the apparent gap conduction σ0.
Strained HgTe appears to be an almost ideal topolog-

ical insulator for transport studies: • the MBE growth
yields easily gated devices with clean interface where mo-
bilities (≈ 3 104cm2/sec.) are already comparable to
graphene; • the Dirac point lies in the gap, and the gap
conduction is dominated by the surface Dirac carriers; •
the bulk conduction is always very low, and in the coex-
istence region with the heavy hole band there is a natural
mobility-selection of the surface carriers.
A resistance can be expressed as a probability of re-

turn to the origin of charge carriers. In two dimen-
sions, this probability strongly depends on closed-loops
paths. There are two “time-reversed” directions along
which charge particles can travel along each closed loop.
For loop sizes smaller than the phase coherence length,

Bulk 
HgTe

III. RESULTS AND DISCUSSIONS

A. Resistivity and SdH oscillations

Figure 1 shows the temperature dependence of !xx of the
Bi2Se3 single crystal studied in this work. It shows a metallic
behavior d! /dT"0 down to !30 K, and saturate at lower
temperature "there is actually a weak minimum near 30 K, as
is usually observed28,30 in low-carrier-density Bi2Se3#. The
single-crystal nature of the sample is evident from the x-ray
diffraction data shown in the upper inset of Fig. 1. The lower
inset of Fig. 1 shows the Hall resistivity !yx measured at 1.5
K for the field direction along the C3 axis, which suggests
that the main carriers are electrons and the carrier density ne
is 3.4#1018 cm−3 "in a one-band model#. From the values of
the Hall coefficient RH=1.82 cm3 /C and !xx=0.28 m$ cm
at 1.5 K, the Hall mobility %H is estimated to be
6500 cm2 /V s.

Figure 2 shows !xx"B# measured at 1.5 K for several field
directions in the transverse geometry "I $C1 and B! I#, after
removing the antisymmetric components due to the leakage
of !yx. Two features are evident: first, pronounced
Shubnikov-de Haas "SdH# oscillations are seen for any field
direction, suggesting their 3D origin. Second, the back-
ground of the SdH oscillations varies significantly with the
field direction, indicating that the transverse MR is very an-
isotropic. Both features are taken into account in our simu-
lation of the observed angular dependence of the MR, as will
be discussed below.

Figure 3 presents the analysis of the observed SdH oscil-
lations. The oscillations in d!xx /dB plotted as a function of
1 /B for B $C2"&=90°# are shown in Fig. 3"a# as an example.
The very simple pattern seen in Fig. 3"a# is a result of the
single frequency F=107 T "see inset for the Fourier trans-
form# governing the SdH oscillations.31 The same analysis
was applied to the data for other field directions, and the
obtained F as a function of & is shown in Fig. 3"b#. The same
set of frequencies can be extracted from the Landau-level
“fan diagram” %inset of Fig. 3"b#&, which is a plot of the

positions of maxima in !xx"B# as a function of the Landau-
level numbers. The slopes of the straight lines in the fan
diagram give exactly the same F"&# as the Fourier transform
result. Another piece of information that can be extracted
from the fan diagram is the phase of the oscillations, ',
which is determined by !xx!cos%2("F /B+'#&. In the
present case, all the straight lines in the inset of Fig. 3"b#
intersect the horizontal axis at the same point, giving '

FIG. 1. "Color online# Temperature dependence of !xx in 0 T.
Upper inset shows the x-ray diffraction pattern of the Bi2Se3 single
crystal used for transport measurements. Lower inset shows !yx for
B $C3 measured at 1.5 K. The slope of !yx"B#, shown by the thin
solid line, suggests that the main carriers are electrons whose den-
sity is 3.4#1018 cm−3.

FIG. 2. "Color online# SdH oscillations measured within the
C3-C2 plane. Thin solid lines are the result of our !xx"B# simulation
"see text#. Inset shows the measurement configuration.

FIG. 3. "Color online# Analyses of the SdH oscillations. The
inset in the middle schematically shows the obtained 3D Fermi
surface and the definition of &. "a# SdH oscillations for B $C2 as a
function of 1 /B. The Fourier transform shown in the inset reveals a
single frequency F=107 T. "b# F"&# measured within the C3-C2
plane; inset shows the fan diagram for several &. "c# Temperature
dependence of the SdH oscillations for B $C3; inset shows the tem-
perature dependences of the SdH amplitudes measured along the C3
and C2 axes at 12 T, yielding the cyclotron mass of 0.14me and
0.24me, respectively. "d# Dingle plots for B $C3 at several tempera-
tures give the same TD=9.5 K.
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• Semi classical approach,                  (perturbative approach) 

• Experimental regime : far from the Dirac point (good 
metal)

• Hamiltonian : 

• Sample length     mean free path       

• Weak disorder regime

Regime of diffusive transport

�V (�r)� = 0 �V (�r)V (�r�)� = γδ(�r − �r�)

λF � le

� le

H = �vF
�
�k × �σ

�
.ẑ + V (�r)



• Scattering anisotropy (spinor overlap)

• Absence of backscattering (TRS)

• Doubling of the transport time

Boltzmann equation

σ =
e2

h
ρ(E)v2F τe D = v2F τe =

v2F τtr
2

θ



• Diffuson spinorial structure 

• One single diffusive mode : 

• Current operator renormalization 
(scattering anisotropy)

Diagrammatic approach

5. Diffusion of Dirac fermions

0.2 0.4 0.6 0.8 1.0
q le! 2

0.5

1.0

1.5

2.0
Sp"Id ! Id " P

D
#

Figure 5.9: Spectrum of Id⊗ Id− γPD(�q,ω = 0) as a function of q = ��q�.

only one mode whose eigenvalue vanishes. This mode is thus the only mass-

less diffusive mode and is the singlet one, whereas the other triplet mode are

massive (their eigenvalues are non zero). These names of singlet and triplet

correspond to the fact that we are considering the propagation of two spin 1/2

excitations, GR
and GA

, so the natural basis is composed of a singlet state

and three triplet. However, this denomination must be considered carefully, in-

deed, the spin is not a correct quantum number because of the spin-momentum

locking, at different momenta, the natural basis of the spin changes. The sin-

glet/triplet is then correct only in the diffusive limit q = 0 ; but we extend

it when q �= 0, even if the terms in the second line of the equation Eq. (5.30)

induce a departure of the eigenstates from traditional singlet and triplet states.

As we will see in the section 6.4, we expect the presence of a single diffusive

mode instead of the four that could be present. This reduction of the number of

diffusive mode is due to the symmetries of the problem, in this case, because

of the spin 1/2 nature of the surface states, the time-reversal operation Θ
squares to the opposite of the identity Θ2 = −Id. This corresponds to a given

universality class in the Anderson problem (either unitary or symplectic, in

this case symplectic) where the number of diffusive mode is fixed to 1.

To describe the diffusion at long distance, it is thus necessary to keep only

the singlet mode so we approximate the diffuson structure factor by its limit

�q → 0 :

ΓD(�q) = γ
1

Dq2τe

1

4
[Id⊗ Id+ σx ⊗ σx − σy ⊗ σy + σz ⊗ σz] . (5.31)

However, the importance of the diffuson in the diffusion process does not

come only from the diffusive mode, but also from a renormalization of the

current operator, and this renormalization is due to one of the massive modes.

86

Jα = 2jα

σ =
e2

h
ρ(E)v2F τe D = v2F τe =

v2F τtr
2

Doubling of transport time from anisotropy

5.5. Diffuson

= + D

Figure 5.10: Diagrammatic representation of the current operator renormal-

ization.

5.5.2 Renormalization of the current operator

By definition, the current operator is obtained by introducing electric potential

via the substitution �p = �p − e �A, and deriving the hamiltonian with respect

to the potential, jα = δH
δAα

. In the case of Dirac fermions we obtain that the

current operator is given by the density of spin, jα = −evFσα
.

The renormalization of the current operator is obtained by including a

vertex correction, in the form of an additionnal diffuson to the current operator,

Jα = jα + jαPDΓD
as represented in the diagram of the figure 5.10. We can

check that it is equivalent to :

Jα = jα ⊗ 1

γ
ΓD . (5.32)

In this case, the diffusive mode will have no contribution, even at q = 0
because of the sum on the Pauli matrices. However, the triplet modes of

the diffuson structure factor ΓD
do contribute and we obtain a renormalized

current operator Jα = 2jα.

We observe the apparition of the same factor of two, seen in the Sec.5.2.3,

due to the anisotropy of the scattering. it corresponds to the difference between

the elastic scattering time and the transport time corresponding to diffusive

transport. Because of the anisotropy of the scattering, we need to observe two

scattering events to lose memory of the initial wavevector (cf. Fig. 5.5).

5.5.3 Classical conductivity

To calculate the mean-value of the classical conductivity, we need to add all

the diagrams where the particle-like excitation and the hole-like excitation ex-

change momentum during scattering events. in addition to the simple diagram

where they do not exchange momentum, we need to count all the "ladder" di-

agrams where they follow the same scattering sequence, which is the diffuson

(Fig.5.11). In the end, this calculation is similar to the plugging of a cur-

rent operator to the renormalized current operator. Namely we will have the

equation :

�σαβ� = � �
2πΩ

�Tr
�
jαG

RjβG
A
�
� (5.33)

=
�
2π

tr
�
JαP

D(�q = 0)jβ
�
. (5.34)
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ΓD(�q) = fS(�q) |S��S| + f1(�q) |T1��T1|
+ f2(�q) |T2��T2| + f3(�q) |T3��T3|



• Universal values : weak (anti)localization / UCF 

• Inelastic scattering : finite coherence time τφ     

Coherent transport
32 CHAPTER 2. PROBING MATTER VIA DIFFUSIVE ELECTRONIC WAVES

Figure 2.1: Reproducible magneto conductance curves at T = 45mK of the same Si doped GaAs after 46 annealing

processes. Extracted from [65].

Drude formula for the conductivity σ0 = ρ(EF )e2τe/m depends only on the mean free time τe between elastic

collusions, i.e. on the density of impurities and not their exact positions. Being of quantum origin, these fluctuations

reflect the interference effects between the contribution of different diffusive paths, or sequence of scattering on

impurities, on the conductivity. Along such a given path, the phase of an electronic state |uk(r)� of momentum

k is increased by δφL = kL where L is the length of the path. For electrons at the Fermi level, k � kF , and

this phase δφL � 2πL/λF appears extremely sensitive on the length L, the Fermi wavelength λF being of atomic

scale. After a annealing procedure the positions of these impurities are modified, hence all the path lengths L
are modified by at least λF , and correspondingly the phases δφL are redistributed randomly. The conductivity

being a non self-averaging quantity, its value is then different from the initial one. A different procedure allows to

redistribute these phases along the diffusive path : the application of a transverse magnetic field. The presence of

such a field can be accounted for by the Peierls substitution which amount to add a extra dephasing e
�
P A.dl along

each each path P , A being the vector potential. As the shape of these paths P is random, the associated magnetic

phases are random : similarly to a change of impurity positions, the magnetic field redistribute the phases associated

with each path in a sample and changes accordingly the value of the conductivity. Whenever a new quantum of

magnetic flux is added though the sample, the typical phase shift between two paths crossing the sample is of

order 2π, and we obtain a statistically independent value of the conductivity, as shown on the experimental data

of figure 2.1. Moreover this function G(B), called a magneto conductance trace, provides an invaluable access

to the statistics of conductance in the quantum regime. Since both the magnetic field and the change of disorder

amounts to redistribute the diffusive phases in a random manner, we expect both perturbation to lead to the same

statistics of the conductance. In other works, this co-called ergodic hypothesis amounts to identify the probability

density function PB(g(V0, B)) of conductance in a fixed sample as the magnetic field is varied, with the probability

density function PV (g(V,B0)) of conductance in a fixed magnetic field but when the configuration of disorder is

varied This ergodic hypothesis turns out to be quantitatively valid for the first two moments of these distributions

PB(g), PV (g) [66]. This ergodic hypothesis is experimentally explicit when averaging both the conductance and

its fluctations over the various curves of figure 2.1 : we obtain the evolution of the average conductance �g�V (B)

2.1. GENERAL IDEA 33

and the variance �(g − �g�V )2�V (B) as a function of the magnetic field. The results are shown on figure 2.2. They

show that beyond fields of order2 4.10−2T, both the average and variance of conductance over disorder realization

become magnetic field independent, indicating that the statistics over the disorder realization, or the magnetic field

are equivalent.

Figure 2.2: (A): mean conductance obtained from figure 2.1 and the weak localization fit [67]. (B): the variance

over the 46 disorder configurations (at fixed magnetic field) as a function of the magnetic field. Extracted from [65].

2.1.3 Probing matter by coherent electronic waves scattering

We will come back in much more details to the description of these fluctuations in the next chapter. Nevertheless,

we already have all the ingredients to understand the core idea of the MesoGlass project : we consider a metallic

wire of µm size with enough magnetic impurities to develop a spin glass phase in the temperature range where the

electronic transport is coherent. The main goal is to gain access to the overlap between two spin configurations,

whether these configurations correspond to two different quench below the spin glass critical temperature Tg , or two

different times tw, tw + t at a fixed temperature below Tg (see the discussion in section 2.1.1). We want to extract

the information on the two frozen spin configurations by measuring the two corresponding magneto-conductance

traces at such a low temperature that the spin dynamics is quenched. By this procedure, we thus obtain two

snapshots of the spin configurations, similarly to the case of figure 2.1 although we now change the orientations of

the frozen spins of the impurities, and not their positions. By considering the correlation between the two magneto-

conductance traces, we expect to access the correlation between the corresponding spin configurations, the overlap

we look after.

Although we will describe in details this correlation between magneto-conductance traces in the next chapter,

let us already precise the idea sketched above. In the spin glass phase, out of the collection of impurity spins

a macroscopic fraction will be frozen and will not flip during the typical diffusion time of electrons. We will

describe them as frozen classical spins with random orientations. The remaining spins will be able to flip by

interaction with the electron bath : they will be considered as another source of dephasing, and contribute to the

reduction of the phase coherence length Lφ(T ) described in the previous section. We expect naturally this phase

coherence length Lφ(T ) to increase when entering into the spin glass phase : indeed, the freezing of a macroscopic

2This variation at small field is related with a change of universality class of the weak localization, as the magnetic field breaks time reversal

symmetry. We come back to this point in the next chapter.

Diffuson Cooperon

Mesoscopic physics :  low T (τφ      ), small samples

Quantum interferences



• Interferences effects : 2 diffusive modes

• Weak anti-localization

• Conductance fluctuations

Coherent transport : diagrammatics

Diffusion at the Surface of Topological Insulators 21

propagation of the so-called Cooperon. Its propagator is defined through the Dyson

equation ΓC( �Q,ω) = γ[1 ⊗ 1 − γPC( �Q,ω)] where PC is :

P (C)( �Q,ω) =

�
d�k

(2π)2
�GR(�k, E)� �GA( �Q− �k, E − ω)�. (B.2)

By a time-reversal operation on the advanced component, we can relate the Cooperon to

the previously identified Diffuson propagator. Only the diffusive modes of the Cooperon

contribute to the dominant quantum correction, leading to a structure factor for the

Cooperon :

ΓC( �Q) =
γ

τe

1

DQ2
|S��S| (B.3)

=
γ

τe

1

DQ2

1

4
[1 ⊗ 1 − σx ⊗ σx − σy ⊗ σy − σz ⊗ σz] , (B.4)

where D is the diffusion constant, D = v2F τe in the absence of warping.

ΓC(�Q)H
C

Figure B1. Diagrammatic representation of the quantum correction to conductivity
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Figure B2. Diagrammatic representation of the dressing of the Hikami box

The weak anti-localization correction is obtained by the contraction of a Cooperon

propagator and a Hikami box, as represented diagrammatically on Fig. B1. This Hikami

box is the sum of three different contributions represented in Fig. B2. We express the

first of these contributions as

�δσ0� =
�
2π

Tr
�
GA(�k)ΣxGR(�k)ΓC( �Q)GR( �Q− �k)ΣxGA( �Q− �k)

�
, (B.5)

where we used the notations introduced in the article Tr for the trace over all the

quantum numbers (spin and momenta), tr for the trace over the spin indices, and�
�k for the trace over the momentum �k. Special care has to be devoted to the order

�δσ� = e2

π�

�

�Q

1

Q2
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Figure C1. Diagram for the conductance fluctuations with Cooperons
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Figure C2. Diagram for the conductance fluctuations with Diffusons.

Diffuson (resp. Cooperon) structure factor between two H
D

(resp. H
C
). Summing

these two diagrams (Fig. C2 and Fig. C1) we obtain :

�δσ2
1� = 8

�
e
2

h

�2
1

V

�

�q

1

q4
. (C.2)

The second part of the conductance fluctuations come from the diagrams represented

in Fig. C3 that we have not yet considered. They require the determination of two

additional Hikami boxes (one for Diffusons and one for Cooperons) :

H̃
D
= ρ(EF )

�
2τe
�

�3 π

16
[1 ⊗ 1 + σx ⊗ σx

] (C.3)

H̃
C
= ρ(EF )

�
2τe
�

�3 π

16
[1 ⊗ 1 − σx ⊗ σx

] . (C.4)

The final results after contraction in spin space of these diagrams is

�δσ2
2� = 4

�
e
2

h

�2
1

V

�

�q

1

q4
. (C.5)

Summing the two contributions (C.2) and (C.5), we finally get the result of Eq 33 :

�δσ2� = �δσ2
1�+ �δσ2

2� = 12

�
e
2

h

�2
1

V

�

�q

1

q4
(C.6)
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Diffuson (resp. Cooperon) structure factor between two H
D

(resp. H
C
). Summing

these two diagrams (Fig. C2 and Fig. C1) we obtain :

�δσ2
1� = 8

�
e
2

h

�2
1

V

�

�q

1

q4
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The second part of the conductance fluctuations come from the diagrams represented

in Fig. C3 that we have not yet considered. They require the determination of two

additional Hikami boxes (one for Diffusons and one for Cooperons) :

H̃
D
= ρ(EF )

�
2τe
�

�3 π

16
[1 ⊗ 1 + σx ⊗ σx

] (C.3)

H̃
C
= ρ(EF )

�
2τe
�

�3 π

16
[1 ⊗ 1 − σx ⊗ σx

] . (C.4)

The final results after contraction in spin space of these diagrams is

�δσ2
2� = 4

�
e
2

h

�2
1

V

�

�q

1

q4
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Summing the two contributions (C.2) and (C.5), we finally get the result of Eq 33 :

�δσ2� = �δσ2
1�+ �δσ2
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�
e
2

h

�2
1

V

�
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Figure C3. Diagrams for the second contribution to conductance fluctuations

Appendix D. Quantum correction for a warped Fermi surface

Appendix B and Appendix C show explicitly the derivation of the weak antilocalization

correction and the conductance fluctuations for Dirac fermions. As expected, the

corresponding results display no dependence in the only relevant parameter to

characterize diffusion : the diffusion constant. These results are naturally expected

to hold when taking into account the hexagonal warping term. To explicitly show this

independence, we determine the value of the quantum correction to conductivity in the

general case where the Fermi surface possesses the hexagonal deformation.

The first step is to obtain the new Hikami box H
C
, the difficulty arising from the

dependence of the current operator on the momentum jx = e
�
−vFσx +

3λ
� σz(k

2
x − k

2
y)
�
.

Recalling that Σx
= jx + jxP

DΓD
, we express the ”naked” Hikami box as:

H
C
0 =

�

�k

�
G

A
(�k)Σx

G
R
(�k)GR

(−�k)Σx
G

A
(−�k)

�
. (D.1)

We perform this integral using polar coordinates, and integrate the radial part :

H
C
0 =

e
2
v
2
F τ

2
e

4γ�
τe

τ (0)e

�
dθ

2π

A+BA+ ⊗ A−BA−

1 + 12b2k̃(θ)4 cos2(3θ)
(D.2)

A± = 1 ± k̃(θ) (cos θσx
+ sin θσy

) + 2b k̃
3
(θ) cos(3θ)σz

(D.3)

B =

�
2 +

β

α + β

�
σx

+ 6b k̃
2
(θ) cos(2θ)σz

(D.4)

The two ”dressed” Hikami boxes, where an impurity line links two Green’s

functions can be calculated by the method used above, and we can write the result

as H
C

=
e2v2F τ2e
4γ� H(b). We need to close this Hikami box with a Cooperon structure

factor ΓC
=

γ
τe

1
D(b)Q2

1
4 (1 ⊗ 1 − σx ⊗ σx − σy ⊗ σy − σz ⊗ σz

). Performing the sum on

the spin space h(b) = tr[H(b)
1
4 (1 ⊗ 1 − σx ⊗ σx − σy ⊗ σy − σz ⊗ σz

)] we obtain the

�δσ2� = 12

�
e2

h

�2
1

V

�

�q

1

q4

Same results as non-relativistic electrons 
with random spin-orbit coupling !

6. Quantum corrections

C

Figure 6.4: Diagrammatic representation of the calculation of the quantum
correction to conductivity.

to EQ. 5.30 we obtain :

PC(�q,ω = 0) =
1

2γ

��
1− τ2e v

2
F q

2

2

�
Id⊗ Id− 1

2

�
1− τ2e v

2
F q

2

4

�
�σ ⊗ �σ

−ivF τe
1

2
�q.(�σ ⊗ Id− Id⊗ �σ) +

τ2e v
2
F

4
(�σ.�q)⊗ (�σ.�q)

�
+ o(τ2e v

2
F q

2). (6.3)

The calculation of the cooperon structure factor ΓC is slightly more sub-
tle because we need to take into account the direction of propagation of the
Green’s function in the recursive equation. Since it must be done "backwards",
this correspond to take the transpose of the matrices. The composition of the
minus sign from σ̃ and the transpose corresponds to add a minus sign to σx

and σz matrix of the advanced Green’s function branch, but the minus sign
does not affect the σy matrix since −(σy)T = σy. In the end, from Eq. (5.31),
the cooperon structure factor can be approximated when Q −→ 0 :

ΓC( �Q) = γ
1

DQ2τe

1

4
[Id⊗ Id− σx ⊗ σx − σy ⊗ σy − σz ⊗ σz] . (6.4)

We observe that the cooperon structure is a traditional singlet ΓC ∝
[Id⊗ Id− σx ⊗ σx − σy ⊗ σy − σz ⊗ σz] as opposed to the diffuson structure
factor ΓD ∝ [Id⊗ Id+ σx ⊗ σx − σy ⊗ σy + σz ⊗ σz]. Indeed, the diffuson
structure is associated with the diffusion of a particle-like excitation and a
hole-like excitation ; the cooperon is associated with the diffusion of two exci-
tations of the same nature, allowing for a traditional expression of the singlet.

6.2 Quantum correction to conductivity

The quantum correction to conductivity (or weak anti-localization) is obtained
similarly to the diffuson correction by calculating (cf Fig.6.4) :

�δσαβ� =
�
2π

Tr
�
GA(�k)JαG

R(�k)ΓC( �Q = �k + �k�)GR(�k�)JβG
A(�k�)

�
. (6.5)
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• Coherent metal + weak disorder :  Anderson problem 

• Universality classes for transition (strong disorder) :  
universal metallic properties (weak disorder)

• Time Reversal Symmetry , 

• T2 = -1

• Symplectic class/AII crossover to Unitary/A (mag. field) 

Anderson problem

2 / 1 diffusive 
modes

4.2. COHERENT DIFFUSION OF DIRAC SURFACE STATES OF D = 3 TOPOLOGICAL INSULATORS 89

Symmetry d− 1

T P C 0 1 2

Wigner - Dyson Classes

A 0 0 0 0 Z 0 Unitary

AI 1 0 0 0 0 0 Orthogonal

AII −1 0 0 0 Z2 Z2 Symplectic

Chiral classes

AIII 0 0 1 Z 0 Z

BDI 1 1 1 Z 0 0

CII −1 −1 1 Z 0 Z2

Bogoliubov-de Gennes classes

C 0 −1 0 0 Z 0

CI 1 −1 1 0 0 Z

BD 0 1 0 Z2 Z 0

DIII −1 1 1 Z2 Z2 Z

Table 4.1: Table of topological insulators and superconductors in dimension d=1,2,3. The 10 symmetry classes of

Anderson localization are labeled using the notation of Altland and Zirnbauer [89]. They are defined by the presence

or absence of time reversal symmetry T , particle-hole symmetry P and chiral symmetry C = PT . 0 denotes the

absence of the corresponding symmetry, with ±1 specifying the eigenvaluevalue of T 2
and C2

. The last three

columns denote the possible presence of a Z or Z2 topological term in the theory describing the localization of the

d − 1 dimensional edge states, and signaling the existence of a topological order in the bulk d dimensional phase.

After [173].

Cooperon
Diffuson

H = �vF
�
�k × �σ

�
.ẑ + V (�r)



• Diffusive modes

• Weak Anti Localization (WAL)

• Conductance fluctuations

Symplectic and unitary classes results 
Symplectic class, TRS Unitary class

Universal results : specificity of Dirac in the crossovers
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Hexagonal warping

• Fermi surface deformation

• Warping hamiltonian

 S.Y. Xu et al. (2011)

( L. Fu, 2009 )

Different energies Fermi surfaces

FIG. 1: Warped surface state and buried (inaccessible) Dirac point of Bi2Te3. Bi2Te3 has a highly warped surface
state (non-ideal Dirac cone) with Dirac node buried under trivial surface states in which the topological transport regime can
not be realized. a, Experimental geometry of spin-resolved ARPES. b, ARPES measurement of 3D surface Dirac cone of
Bi2Te3. Arrows represent the in-plane component of the measured spin texture. c, Surface state warping factor w as a function

of surface carrier density (n). The warping factor is defined as w(n) = kF (Γ̄−M̄)−kF (Γ̄−K̄)
kF (Γ̄−M̄)+kF (Γ̄−K̄)

×
2+

√
3

2−
√

3
. w = 0 implies fully isotropic

FS (circle); w = 1 implies perfect hexagon FS; w > 1 implies snowflake-shaped FS. d, High-resolution ARPES mapping of
Fermi surface evolution with binding energy. Arrows represent the in-plane component of the measured spin texture. The
surface carrier density (in unit of ×10−2Å−2) and warping factor values are indicated at the top left and bottom right corners
of each Fermi surfaces.

and caption for definition) serve as universal quantities
describing the TI single Dirac cone which do not depend
on the individual chemistry formula. However, it is hard
to evaluate them at EB = ED due to the six-fold feature.
The deviation from universal description also indicates
the undesirable electrodynamic condition of the Bi2Te3
surface states at the energy level of the Dirac point. The
strongly warped snowflake Fermi surface makes Bi2Te3
ideal for testing how nonlinear effect and Fermi surface
geometric constraint modulate the spin texture configu-
ration. The wide range of warping factor value (0 ∼ 1.6)
and surface carrier density (0 ∼ 8× 10−2Å−2) also indi-
cates a variety of spin textures which enables the Bi2Te3
surface states to perform different spin-based functional-
ities at different regimes.
We used spin-resolved ARPES [33] to investigate the

surface Fermi surface spin texture in the highly warped
regime. So far spin-sensitive measurements have only
been carried out at the isotropic circular Fermi surface
regime of Bi2Te3 where the spins are found to follow the
Fermi circle tangentially which leads to a π Berry’s phase
as shown by Hsieh et.al., [9]. Here, we start from the most
warped Fermi surface with a warping factor w = 1.6 far
away from the Dirac node. We show three representative
spin-resolved measurements (track α, β, γ) along differ-
ent momentum directions on the snowflake contour (see
Fig. 2a and caption). Fig. 2b shows the measured out-
of-plane spin-polarization (Pz) spectra for tracks α, β
and γ. All three tracks show clear ẑ polarization signals

(up to 30%), which indicates that a non-zero out-of-plane
component of spin has developed when the Fermi surface
is strongly warped. Interestingly, Pz at γ1 which locates
at the corner of the snowflake contour is zero, whereas Pz

at α1, α2, and γ2 which all locate at the most concave-
in point give largest polarization amplitude. Now we
turn to in-plane spin measurements (Fig. 2c, d, e). It
is interesting to notice that track α, which is a diagonal
track (crosses the time-reversal invariant Γ̄ point) clearly
manifests the time-reversal invariant nature of the Bi2Te3
system. Spins at the opposite sides of the Fermi surface
have the opposite directions (Px = 0, Py and Pz have the
opposite signs at opposite sides), demonstrating the sup-
pression of “U-turn” scattering on Bi2Te3 surface. We
fit the spin polarization spectra following the two-step
fitting routine [34]. Fig. 2a shows the fitted 3D spin
vector directions. The resulting texture configuration is
a 3D left-handed vectorial vortex which features an out-
of-plane spin component oscillating around the snowflake
contour.
In order to show how the spin textures are related

to quasi-particle spin transport experiments, we evaluate
the spin-dependent scattering profile. Fig. 3d shows the
probability of an electron being scattered in momentum
transfer %q space from one part on the snowflake contour to
the other. We focus on scattering along 3 representative
scattering vectors %q1, %q2, and %q3, which correspond to the
scattering in between the corners of the snowflakes (see
Fig. 3d inset). A comparison between the realistic spin-
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Bi2Te3. Arrows represent the in-plane component of the measured spin texture. c, Surface state warping factor w as a function
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• Density of states : 

• Scattering probability :                                 spinor overlap
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• Result non perturbative in warping term b

• Correction to Dirac physics

• Possible to probe experimentally

Diagrammatic approach
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• Dirac physics : anisotropy of the scattering

• Symplectic class, universal result (WAL 
correction)

• Specificity of the hexagonal warping

• Departure from pure Dirac physics

• To be treated non-pertubatively

• Dependance of the crossovers

• In-plane magneto-transport

Theory of diffusion of 3DTI surface 
states
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Figure 11. Dependance of the density of states (Left) and classical conductivity

(Right) on the Fermi energy for the two ensembles of values of λ = 128 eV.Å3 ,

vF = 3.55 eV.Å for Bi2Se3 and λ = 250 eV.Å3 and vF = 2.55 eV.Å corresponding to

the Bi2Te3 compounds. On the left figure, the dotted lines corresponds to the standard

linear density of states for Dirac fermions without warping λ = 0. On the right figure,

the results are represented as a ratio with the conductivity in the absence of warping

σ(λ = 0) which is independent on the energy and incorporates the dependance on the

disorder strength.

Indeed, the shape of the typical measurement of the weak (anti-)localization correction

through the dependance of the conductivity on a magnetic field perpendicular to the

surface depends solely on the diffusion constant. This diffusion constant depending on

the Fermi energy, the associated anti-localization curve depends itself on this Fermi

energy as shown on Fig. ??. While the amplitude of conductance fluctuations are
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Figure 12. Dependance of the weak localization correction �δσ(B)�/�δσ(B = 0)�
on the Fermi energy for the values of λ, vF corresponding to the Bi2Te3 (Left) and

Bi2Se3 (Right) compounds. We have chosen to scale the magnetic field as B/B0 where

B0l2e = φ0 = h/e to avoid any energy (or warping) dependance of this rescaling field.

The results show a clear dependance on energy of the magnetic field characteristic of

weak localization decay.

universal in the limit of an entirely coherent conductor, their amplitude in a realistic

situation where Lφ � L will be parametrized by a universal function of the Diffusion



Outline

• Diffusion, regime of weak disorder

• Diffusion of Dirac fermions

• 3D Strong topological insulators

• Graphene

• Diffusion of semi-Dirac excitations



• σ : sublattice

• 2 x 2 cones

• TRS : no constraint

• Trigonal warping at 
high energies

Dirac fermions system
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Figure 4.4: Hexagonal warping of surface states in Bi2Te3 from ARPES and STM studies. The Fermi surface evo-

lution as a function of increased chemical potential (n-type doping) is shown as observed in ARPES measurements.

Extracted from [126], and adapted from [158].

Figure 4.5: Left : Dispersion relation of the Dirac model (4.1) in the presence of an hexagonal warping term. Right

: Dispersion relation of graphene showing the appearance of two inequivalent Dirac cones at the Brillouin zone

boundary.

the spin acquires a non vanishing value, alternating around the surface state. This hexagonal warping of the Fermi

surface were indeed experimentally observed prior to the prediction of Fu through ARPES and scanning tunneling

microscopy experiments performed on Bi2Te3 crystals [158, 159, 160, 161, 162], and also in Bi2Se3 [163, 164] :

see figure 4.4. It appears thus necessary to include this warping term in (4.1) to fully describe the quantum diffusion

properties of these surface states. This term breaks the full U(1) rotation symmetry of the Dirac cone down to a

hexagonal C6 symmetry [157, 165], however, it preserves time reversal symmetry.

4.2.2.2 Relation with the low energy model of graphene

The hamiltonian (4.1) shares a lot of similarities with the Dirac Hamiltonian for low energy excitations in graphene

[166, 167]. Indeed, without the hexagonal warping term and up to an in plane spin rotation, this hamiltonian

H = �vf (�σ × �k).ẑ

• σ : magnetic spin

• 1 cone (odd)

• TRS : constraint

• Hexagonal warping at 
high energies

Graphene STI surface state



Weak localization in graphene
Valley degeneracy : 

possibility of intra- and inter- valley scattering

• 2 independant Dirac 
cones

• Absence of 
backscattering

• Weak anti-localization

• 2 disorder-coupled 
Dirac cones

• Possibility of 
backscattering

• Weak localization

Intravalley scattering only With Intervalley scattering

Strong disorder limit :
disorder always opens a gap (insulator) as opposed to 

3DSTI (always at least one
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• Diffusion, regime of weak disorder

• Diffusion of Dirac fermions

• 3D Strong topological insulators

• Graphene

• Diffusion of semi-Dirac excitations



• Hexagonal lattice (graphene)  

• 2 Dirac fermions, with topologic number

Semi-Dirac excitations

11

FIG. 7: Relative phase θ!q of the two-component wave function. The parameter are chosen in arbitrary units m∗ = cy = 1. The
four plots correspond respectively from left to right and then from top to bottom: ∆ = −1,−.3, 0, 1. In the insulating phase, two
opposite Berry phases are attached to the two Dirac points. The Berry phases annihilate at the transition point.

FIG. 8: Semiclassical quantization of area. When ε < −∆, the quantization of energy levels results from the quantization of
orbits in each valley S(ε)#2B = 2πneB and the spectrum has the double valley degeneracy. When ε > −∆, above the saddle
point, the quantization implies larger orbits which encircle the two Dirac valleys, and it reads S(ε)#2B = 2π(n′ + 1/2)eB .

E. Semiclassical quantization and integrated density of states

It is instructive to derive the energy levels from semiclassical Bohr-Sommerfeld quantization: along one period of
the motion, the action must be quantized. This condition can be written as

S(ε) = 2π(n + γ)
eB

!
, (37)

where S(ε) is the area of a cyclotron orbit of energy ε is reciprocal space. It is simply S(ε) = 4π2N(ε) where N(ε)
is the integrated density of states which can be obtained from expressions (15). The phase mismatch γ is the sum
of two contributions γ = γM + γB where γM is the Maslov contribution and γB results from the Berry phase. We
obtain, for ε < −∆:

S(ε) =
4
√

2

3

√

m∗(ε − ∆)

cy

[

(ε + ∆)K

(

√

2ε

ε − ∆

)

− ∆E

(

√

2ε

ε − ∆

)]

(38)

where K(x) and E(x) are respectively complete elliptic integrals of the first and of the second kind.24 This quantity
represents the area enclosed by each of the two degenerate equal energy lines encircling one Dirac point (Fig. 8).
The phase mismatch cancels here due to a finite Berry phase γB = ±1/2,25 so that the quantization condition is
S(ε) = 2πneB.
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qD, m∗ cx = qD/m∗ ∆ = −q2
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qD, cx m∗ = qD/cx ∆ = −cxqD/2

m∗, cx qD = m∗cx ∆ = −m∗c2/2
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p

−2∆/m∗ qD =
√
−2m∗∆

cx, ∆ qD = −2∆/cx m∗ = −2∆/c2
x

qD, ∆ m∗ = −q2
D/2∆ cx = −2∆/qD

TABLE I: In addition to the velocity cy, the universal Hamiltonian is described by two independent parameters (left column)
from which two other parameters may be deduced

III. PROPERTIES OF THE UNIVERSAL HAMILTONIAN

FIG. 1: Evolution of the spectrum when the quantity ∆ is varied and changes in sign at the topological transition (arbitrary
units). The low-energy spectrum stays linear in the qy direction.

Without loss of generality, we assume m∗ > 0. When ∆ varies from negative to positive values, a topological
transition from a semi-metallic phase with two Dirac cones and a band insulator with a gapped spectrum occurs. At
the transition, the spectrum is hybrid, a reminiscence of the saddle point in the semi-metallic phase, see figure (1).

When ∆ < 0, the spectrum exhibits two Dirac points the position of which along the x axis is given by ±qD with

qD =
√
−2m∗∆ (13)

and the linear spectrum around these Dirac points is characterized by the velocity cx along the x direction :

cx =
qD

m∗ =

√

−2∆

m∗ . (14)

The two Dirac points are separated by a saddle point at position qS = 0 whose energy is ±|∆|. The mass m∗ describes
the curvature of the spectrum at the vicinity of this point along the x direction. When ∆ < 0 varies, the Dirac points
move along the qx axis.

The energy dispersion relation (12) is characterized by three parameters, the velocity cy along the qy direction, the
mass m∗ along the qx direction and the gap ∆. Alternatively, it can be characterized by the distance 2qD between
the Dirac cones or the velocity cx, or by any combination of two among the four parameters m∗, ∆, cx, or qD. In table
(I), we write explicitly all the combinations between these parameters. The universal Hamiltonian describes properly
the vicinity of the Dirac points. The spectrum can be linearized along the qx direction, to recover a anisotropic Dirac
equation in the vicinity of each point with a velocity cx given by (14)

H = �vF�σ.�q



• Merging of the Dirac cones  

• Δ = 0 : Semi-Dirac excitation, 

Semi-Dirac excitations
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the vicinity of the Dirac points. The spectrum can be linearized along the qx direction, to recover a anisotropic Dirac
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Without loss of generality, we assume m∗ > 0. When ∆ varies from negative to positive values, a topological
transition from a semi-metallic phase with two Dirac cones and a band insulator with a gapped spectrum occurs. At
the transition, the spectrum is hybrid, a reminiscence of the saddle point in the semi-metallic phase, see figure (1).

When ∆ < 0, the spectrum exhibits two Dirac points the position of which along the x axis is given by ±qD with
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mass m∗ along the qx direction and the gap ∆. Alternatively, it can be characterized by the distance 2qD between
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the vicinity of the Dirac points. The spectrum can be linearized along the qx direction, to recover a anisotropic Dirac
equation in the vicinity of each point with a velocity cx given by (14)

H =
�2q2x
2m

σx + �vFσyqy

Also predited in VO2/TiO2 

heterostructures

H = (∆+
�2q2x
2m

)σx + �vFσyqy
Montambaux et al., 2009

Pardo and Pickett, 2009



Boltzmann equation
• Spinorial nature :  Anisotropy of the scattering

• Anisotropy of the density of states
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Boltzmann equation

• Stronger anisotropy of the scattering for semi-Dirac 
excitations compared to Dirac fermions

• Combination of these two anisotropies : Anisotropy of 
the diffusion
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Diagrammatics

• Direction dependant elastic mean free time

• 2 diffusive modes, 1 diffuson and 1 cooperon

• Drude conductivity tensor

• Weak anti-localization (Quantum interferences)
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Topological phase transition

• Dependance in Δ of the conductances
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Without loss of generality, we assume m∗ > 0. When ∆ varies from negative to positive values, a topological
transition from a semi-metallic phase with two Dirac cones and a band insulator with a gapped spectrum occurs. At
the transition, the spectrum is hybrid, a reminiscence of the saddle point in the semi-metallic phase, see figure (1).
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The two Dirac points are separated by a saddle point at position qS = 0 whose energy is ±|∆|. The mass m∗ describes
the curvature of the spectrum at the vicinity of this point along the x direction. When ∆ < 0 varies, the Dirac points
move along the qx axis.

The energy dispersion relation (12) is characterized by three parameters, the velocity cy along the qy direction, the
mass m∗ along the qx direction and the gap ∆. Alternatively, it can be characterized by the distance 2qD between
the Dirac cones or the velocity cx, or by any combination of two among the four parameters m∗, ∆, cx, or qD. In table
(I), we write explicitly all the combinations between these parameters. The universal Hamiltonian describes properly
the vicinity of the Dirac points. The spectrum can be linearized along the qx direction, to recover a anisotropic Dirac
equation in the vicinity of each point with a velocity cx given by (14)
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The two Dirac points are separated by a saddle point at position qS = 0 whose energy is ±|∆|. The mass m∗ describes
the curvature of the spectrum at the vicinity of this point along the x direction. When ∆ < 0 varies, the Dirac points
move along the qx axis.

The energy dispersion relation (12) is characterized by three parameters, the velocity cy along the qy direction, the
mass m∗ along the qx direction and the gap ∆. Alternatively, it can be characterized by the distance 2qD between
the Dirac cones or the velocity cx, or by any combination of two among the four parameters m∗, ∆, cx, or qD. In table
(I), we write explicitly all the combinations between these parameters. The universal Hamiltonian describes properly
the vicinity of the Dirac points. The spectrum can be linearized along the qx direction, to recover a anisotropic Dirac
equation in the vicinity of each point with a velocity cx given by (14)
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mass m∗ along the qx direction and the gap ∆. Alternatively, it can be characterized by the distance 2qD between
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(I), we write explicitly all the combinations between these parameters. The universal Hamiltonian describes properly
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Conclusion

• Significative difference with Dirac or non-relativistic 
excitations : anisotropic diffusion

• Study of the topological phase transition 

• Weak antilocalization (symplectic class)

• Details soon on ArXiv
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Without loss of generality, we assume m∗ > 0. When ∆ varies from negative to positive values, a topological
transition from a semi-metallic phase with two Dirac cones and a band insulator with a gapped spectrum occurs. At
the transition, the spectrum is hybrid, a reminiscence of the saddle point in the semi-metallic phase, see figure (1).
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The two Dirac points are separated by a saddle point at position qS = 0 whose energy is ±|∆|. The mass m∗ describes
the curvature of the spectrum at the vicinity of this point along the x direction. When ∆ < 0 varies, the Dirac points
move along the qx axis.

The energy dispersion relation (12) is characterized by three parameters, the velocity cy along the qy direction, the
mass m∗ along the qx direction and the gap ∆. Alternatively, it can be characterized by the distance 2qD between
the Dirac cones or the velocity cx, or by any combination of two among the four parameters m∗, ∆, cx, or qD. In table
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