Diffusion of Dirac fermions

P.Adroguer

Laboratoire de Physique, Ecole Normale Supérieure de Lyon, France

Outline

- Diffusion, regime of weak disorder
- Diffusion of Dirac fermions
 - 3D Strong topological insulators
 - Graphene
- Diffusion of semi-Dirac excitations

Outline

- Diffusion, regime of weak disorder
- Diffusion of Dirac fermions
 - 3D Strong topological insulators
 - Graphene
- Diffusion of semi-Dirac excitations

Diffusion

- Continuity limit of a random walk (mean free path l_e)
- Semi classical approach $\lambda_F \ll l_e$
- Experimental regime, high Fermi energy : good metal
- Sample length \gg mean free path l_e
- Weak disorder regime
 - Boltzmann equation
 - Diagrammatics

Boltzmann equation

• Integro-differential equation

$$-e\vec{E}.\frac{\partial f}{\partial \vec{k}} = \langle \int \frac{d\vec{k'}}{(2\pi)^2} - 2\pi |\langle \vec{k'}|V|\vec{k}\rangle|^2 \delta(E(\vec{k'}) - E_F) \left[f(\vec{k'}) - f(\vec{k})\right] \rangle$$

• 2 quantities of interest : scattering probability and density of states

• Linear response : Drude's conductivity (no quantum corrections, no UCF)

Standard diagrammatic technique

• Linear response : Kubo formula \hbar

$$\sigma_{\alpha\beta} = \frac{h}{2\pi\Omega} \Re Tr\left(j_{\alpha}G^{R}j_{\beta}G^{A}\right)$$

Classical part (diffuson) = Drude's

• Quantum mechanics $\sigma \propto \sum_{i,j} a_i^* a_j$

conductivity

- Quantum interferences (cooperon) : WL, UCF

Kong et al., 2010

Outline

- Diffusion, regime of weak disorder
- Diffusion of Dirac fermions
 - 3D Strong topological insulators
 - Graphene
- Diffusion of semi-Dirac excitations

3DTI Transport experiments

- Residual bulk conductance
 - Thin films : improve surface/bulk ratio, gating both surfaces
 - Strained HgTe : no bulk conductance
- Magneto-transport : weak anti-localization

Regime of diffusive transport

- Semi classical approach, $\lambda_F \ll l_e$ (perturbative approach)
- Experimental regime : far from the Dirac point (good metal)
- Hamiltonian : $\mathcal{H} = \hbar v_F \left(\vec{k} \times \vec{\sigma} \right) . \hat{z} + V(\vec{r})$ $\langle V(\vec{r}) \rangle = 0 \qquad \langle V(\vec{r}) V(\vec{r'}) \rangle = \gamma \delta(\vec{r} - \vec{r'})$
- Sample length \gg mean free path l_e
- Weak disorder regime

Boltzmann equation

• Scattering anisotropy (spinor overlap)

- Absence of backscattering (TRS)
- Doubling of the transport time

$$\sigma = \frac{e^2}{h}\rho(E)v_F^2\tau_e \qquad \qquad D = v_F^2\tau_e = \frac{v_F^2\tau_{tr}}{2}$$

Diagrammatic approach

• Diffuson spinorial structure $\Gamma^{D}(\vec{a}) = f_{a}(\vec{a})$

 $\Gamma^{D}(\vec{q}) = f_{S}(\vec{q}) |S\rangle\langle S| + f_{1}(\vec{q}) |T_{1}\rangle\langle T_{1}|$ $+ f_{2}(\vec{q}) |T_{2}\rangle\langle T_{2}| + f_{3}(\vec{q}) |T_{3}\rangle\langle T_{3}|$

• One single diffusive mode :

$$\Gamma^{D}(\vec{q}) = \gamma \frac{1}{Dq^{2}\tau_{e}} \frac{1}{4} \left[Id \otimes Id + \sigma^{x} \otimes \sigma^{x} - \sigma^{y} \otimes \sigma^{y} + \sigma^{z} \otimes \sigma^{z} \right]$$

• Current operator renormalization (scattering anisotropy) $J_{\alpha} = 2j_{\alpha}$ $= \cdots + \cdots \int \Gamma^{p}$ $\sigma = \frac{e^{2}}{h}\rho(E)v_{F}^{2}\tau_{e}$ $D = v_{F}^{2}\tau_{e} = \frac{v_{F}^{2}\tau_{tr}}{2}$

Doubling of transport time from anisotropy

Coherent transport

Coherent transport : diagrammatics

• Weak anti-localization

Same results as non-relativistic electrons with random spin-orbit coupling !

Anderson problem

- Coherent metal + weak disorder : Anderson problem
 - Universality classes for transition (strong disorder) : universal metallic properties (weak disorder)
 - Time Reversal Symmetry , $\mathcal{H} = \hbar v_F \left(\vec{k} \times \vec{\sigma} \right) . \hat{z} + V(\vec{r})$

• Symplectic class/All crossover to Unitary/A (mag. field)

Symplectic and unitary classes results

Symplectic class, TRS

• Diffusive modes

Unitary class

- Weak Anti Localization (WAL) $\langle \delta \sigma \rangle = \frac{e^2}{\pi \hbar} \int_{\vec{Q}} \frac{1}{Q^2}$
- Conductance fluctuations

$$\langle \delta \sigma^2 \rangle = 12 \left(\frac{e^2}{h}\right)^2 \frac{1}{V} \int_{\vec{q}} \frac{1}{q^4}$$

 $\langle \delta \sigma \rangle = 0$

$$\left< \delta \sigma^2 \right> = 6 \left(\frac{e^2}{h} \right)^2 \frac{1}{V} \int_{\vec{q}} \frac{1}{q^4}$$

Universal results : specificity of Dirac in the crossovers

Hexagonal warping

• Fermi surface deformation

• Warping hamiltonian

$$\mathcal{H} = \hbar v_F (\vec{\sigma} \times \vec{k}) . \hat{z} + \frac{\lambda}{2} (k_+^3 + k_-^3) \sigma^z \sigma^z (\mathbf{L}. \mathrm{Fu}, \mathrm{2009})$$

$$b = \frac{\lambda E_F^2}{2(\hbar v_F)^3} = \frac{w(w + w_{\max})^2}{2(w_{\max} - w)^3} \quad ; \quad w = w_{\max} \frac{k_{\max} - k_{\min}}{k_{\max} + k_{\min}},$$

Experimentally : $0 \le b \lesssim 0.6$

Boltzmann approach

- Density of states : $f(\vec{k})$
- Scattering probability : $|\langle \vec{k'} | V | \vec{k} \rangle|^2 = g_{\vec{k}}(\theta)$ spinor overlap

Diagrammatic approach

• Result non perturbative in warping term b

• Correction to Dirac physics

Theory of diffusion of 3DTI surface states

- Dirac physics : anisotropy of the scattering
- Symplectic class, universal result (WAL correction)
- Specificity of the hexagonal warping
 - Departure from pure Dirac physics
 - To be treated non-pertubatively
 - Dependance of the crossovers

-1.0

• In-plane magneto-transport

Outline

- Diffusion, regime of weak disorder
- Diffusion of Dirac fermions
 - 3D Strong topological insulators
 - Graphene
- Diffusion of semi-Dirac excitations

- TRS : no constraint
- Trigonal warping at high energies

system $\mathcal{H} = \hbar v_f (\vec{\sigma} \times \vec{k}) . \hat{z}$

- STI surface state
- σ : magnetic spin
- I cone (odd)
- TRS : constraint
- Hexagonal warping at high energies

Weak localization in graphene

Valley degeneracy : possibility of intra- and inter- valley scattering

Intravalley scattering only

- 2 independant Dirac cones
- Absence of backscattering
- Weak anti-localization

With Intervalley scattering

- 2 disorder-coupled Dirac cones
- Possibility of backscattering
- Weak localization

Strong disorder limit : disorder always opens a gap (insulator) as opposed to 3DSTI (always at least one

Outline

- Diffusion, regime of weak disorder
- Diffusion of Dirac fermions
 - 3D Strong topological insulators
 - Graphene
- Diffusion of semi-Dirac excitations

Semi-Dirac excitations

• Hexagonal lattice (graphene)

• 2 Dirac fermions, with topologic number

$$\mathcal{H} = \hbar v_F \vec{\sigma}.\vec{q}$$

	┤
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	****
~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	****
~~~~ + + + + + + + + + + + + + + + + +	****
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	****
	****
**************************************	**** ****
**************************************	****
**************************************	
****************	****
<i>★ ★ ★ </i>	***
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***
<i>7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 </i>	* * * *
<i> </i>	1111

Semi-Dirac excitations

- Merging of the Dirac cones $\mathcal{H} = (\Delta + \frac{\hbar^2 q_x^2}{2m})\sigma^x + \hbar v_F \sigma^y q^y$ Montambaux et al., 2009
 - $\Delta = 0$: Semi-Dirac excitation, \mathcal{H}

$$\ell = \frac{\hbar^2 q_x^2}{2m} \sigma^x + \hbar v_F \sigma^y q^y$$

Also predited in VO₂/TiO₂ heterostructures

Pardo and Pickett, 2009

Boltzmann equation

• Spinorial nature : Anisotropy of the scattering

Pure Dirac fermions

$$\begin{split} |\psi(\vec{k})\rangle &= \begin{pmatrix} 1\\ e^{i\theta_{\vec{k}}} \end{pmatrix}\\ |\langle\psi(\vec{k})|\psi(\vec{k'})\rangle|^2 &= \frac{1+\cos\theta}{2} \end{split}$$

• Anisotropy of the density of states

$$\mathcal{H} = \frac{\hbar^2 q_x^2}{2m} \sigma^x + \hbar v_F \sigma^y q^y$$

High density

Low density

Boltzmann equation

Stronger anisotropy of the scattering for semi-Dirac excitations compared to Dirac fermions

Diagrammatics

• Direction dependant elastic mean free time

$$-\Im\Sigma = \frac{1}{\tau_e}Id + \frac{\cos\theta}{\tau_e^*}\sigma^x$$

- 2 diffusive modes, I diffuson and I cooperon
- Drude conductivity tensor

$$\sigma_{xx} = \frac{e^2}{h} \frac{2E\hbar^2}{m\gamma} \frac{2e}{\tilde{a}} \qquad \sigma_{yy} = \frac{e^2}{h} \frac{\hbar^2 v_F^2}{\gamma} \frac{2c}{\tilde{a}} \qquad \sigma_{xy} = \sigma_{yx} = 0$$

• Weak anti-localization (Quantum interferences)

Topological phase transition

• Dependance in Δ of the conductances

Conclusion

• Significative difference with Dirac or non-relativistic excitations : anisotropic diffusion

Study of the topological phase transition

- Weak antilocalization (symplectic class)
- Details soon on ArXiv