TD 6 - Transformations de la matière

Pour tout ce TD, nous considèrerons les masses molaires suivantes, en g/mol :

```
M(H) = 1.0 M(C) = 12.0 M(N) = 14.0 M(O) = 16.0 M(Cl) = 35.5 M(Na) = 23.0 M(Ca) = 40.1 M(Fe) = 55.8 M(Ag) = 107.9
```

1 Exercice 1 - Calculs de concentration.

Question (1.1)

Déterminer la concentration de la solution (autre nom de la concentration en soluté apporté) ainsi que la concentration de tous les ions en solution pour une solution obtenue :

- 1.1.a.) par dissolution de 2,0 mol de NaCl dans 0,50 L d'eau;
- 1.1.b.) par dissolution de 11.7 g de NaCl dans 0.75 L d'eau;
- 1.1.c.) par dissolution de 11,1 g de $CaCl_2$ dans 2,00 L d'eau;
- 1.1.d.) pour une solution d'acide chlorhydrique de densité 1,19 et de titre massique de 37 $\%\,;$

Question (1.2)

On mélange les solutions 2 et 3. Quelles sont les concentrations des ions en solution?

Question (1.3)

Quel volume de la solution commerciale d'acide chlorhydrique doit-on prélever pour préparer par dilution $100~\mathrm{mL}$ de solution à la concentration de $2,0~\mathrm{mol/L}$? Nommer et dessiner la verrerie utilisée.

2 Exercice 2 - Réaction de combustion du glucose.

Pour utiliser l'énergie contenue dans les éléments, le corps humain les transforme grâce à des réactions chimiques. Par exemple, le glucose $C_6H_{12}O_6$ contenu dans les éléments réagit avec l'oxygène pour former de l'eau et du dioxyde de carbone.

Question (2.1)

Ecrire l'équation de réaction de combustion du glucose.

Question (2.2)

Quelle est la masse de dioxygène nécessaire pour que la combustion consomme 72 g de glucose?

3 Exercice 3 - Précipitation des sels d'argent

On prépare deux solutions par dissolution, S_1 en dissolvant 34,0 g de nitrate d'argent $AgNO_3$ dans 250 mL de solution, S_2 en dissolvant 29,3 g de NaCl dans 500 mL d'eau. On donne la formule de l'ion nitrate NO_3^- .

Question (3.1)

Ecrire les deux équations de dissolution, et déterminer les concentrations des ions présents dans chaque solution.

Question (3.2)

L'ion argent trouvé précédemment réagit totalement avec les ions chlorure pour former du chlorure d'argent.

- 3.2.a.) Ecrire l'équation de la réaction de précipitation du chlorure d'argent.
- 3.2.b.) Déterminer les concentrations de chaque ion lorsque l'on mélange S_1 et S_2 . On écrira un tableau d'avancement.