Programme de colles - Semaine du 9 mai

Questions de cours

Réactions acido-basiques

- Écrire la réaction de l'ammoniac NH_3 avec l'eau. Exprimer sa constante d'équilibre K en fonction des concentrations puis en fonction de K_a et K_e . A partir de soude (NaOH) solide m=100 mg, on prépare une solution de volume V=100 mL. On donne M(NaOH)=40,0 g/mol, calculer le pH de cette solution.
- △ Déterminer le pH d'un mélange de $V_1 = 100$ mL de solution d'ammoniac NH_3 de concentration $c = 1, 0.10^{-3}$ mol/L $(pK_a(NH_4^+/NH_3 = 9, 2))$ et de $V_2 = 50$ mL de solution d'acide formique de concentration c = 0, 01 mol/L $(pK_a(HCOOH/HCOO^- = 3, 8))$. Déterminer la concentration en soluté apporté d'une solution de HCOOH de pH = 3, 0.

Oxydoréduction

- **△** En utilisant la réaction $Cu^{2+} + Zn \rightarrow Cu + Zn^{2+}$, définir oxydant, réducteur, oxydation et réduction. Donner la demi-équation du couple MnO_4^-/Mn^{2+} , et calculer le nombre d'oxydation du manganèse dans les deux espèces. Justifier que MnO_4^- est l'oxydant. Ecrire l'équation de réaction entre MnO_4^- et Fe^{2+} .
- മ En utilisant la réaction $Cu^{2+} + Zn \rightarrow Cu + Zn^{2+}$, définir oxydant, réducteur, oxydation et réduction. Donner la demi-équation du couple $Cr_2O_7^{2-}/Cr^{2+}$, et calculer le nombre d'oxydation du chrome dans les deux espèces. Justifier que $Cr_2O_7^{2-}$ est l'oxydant. Ecrire l'équation de réaction des éthylotests entre $Cr_2O_7^{2-}$ et CH_3CH_2OH du couple CH_3CO_2H/CH_3CH_2OH .
- ✓ Utiliser la relation de Nernst pour calculer le potentiel d'une solution contenant $[Cu^{2+}] = 0, 1 \text{ mol/L}$, on donne $E^0(Cu^{2+}/Cu) = 0, 34 \text{ V}$. Décrire une pile Daniell, et dire quelle réaction se produit à chaque électrode. Expliquer comment calculer sa capacité.
- △ Utiliser la relation de Nernst pour calculer le potentiel d'une solution contenant $[Cu^{2+}] = 0, 1 \text{ mol/L}$, on donne $E^0(Cu^{2+}/Cu) = 0, 34 \text{ V}$. Calculer la constante de la réaction entre Fe^{3+} et $S_2O_3^{2-}$ des couples Fe^{3+}/Fe^{2+} $(E_1^0 = 0, 77 \text{ V})$ et $S_4O_6^{2-}/S_2O_3^{2-}$ $(E_2^0 = 0, 08 \text{ V})$. Donner un critère arbitraire sur les potentiels standards pour avoir une réaction totale.
- \triangle On donne $E^0(S_4O_6^{2-}/S_2O_4^{2-})=0.08$ V et $E^0(S_2O_3^{2-}/S)=0.50$ V. Montrer que $S_2O_3^{2-}$ se dismute et écrire l'équation bilan de dismutation. Donner la constante d'équilibre, et dire à quelle condition les ions thiosulfates $S_2O_3^{2-}$ sont instables. Expliquer ce qu'est une médiamutation (+exemple).

Pour la semaine suivante...

★ Oxydo-réduction. Thermodynamique.

Programme de colles - Semaine du 9 mai

Questions de cours

Réactions acido-basiques

- Écrire la réaction de l'ammoniac NH_3 avec l'eau. Exprimer sa constante d'équilibre K en fonction des concentrations puis en fonction de K_a et K_e . A partir de soude (NaOH) solide m = 100 mg, on prépare une solution de volume V = 100 mL. On donne M(NaOH) = 40,0 g/mol, calculer le pH de cette solution.
- △ Déterminer le pH d'un mélange de $V_1 = 100$ mL de solution d'ammoniac NH_3 de concentration $c = 1, 0.10^{-3}$ mol/L $(pK_a(NH_4^+/NH_3 = 9, 2)$ et de $V_2 = 50$ mL de solution d'acide formique de concentration c = 0, 01 mol/L $(pK_a(HCOOH/HCOO^- = 3, 8)$. Déterminer la concentration en soluté apporté d'une solution de HCOOH de pH = 3, 0.

Oxydoréduction

- **△** En utilisant la réaction $Cu^{2+} + Zn \rightarrow Cu + Zn^{2+}$, définir oxydant, réducteur, oxydation et réduction. Donner la demi-équation du couple MnO_4^-/Mn^{2+} , et calculer le nombre d'oxydation du manganèse dans les deux espèces. Justifier que MnO_4^- est l'oxydant. Ecrire l'équation de réaction entre MnO_4^- et Fe^{2+} .
- മ En utilisant la réaction $Cu^{2+} + Zn \rightarrow Cu + Zn^{2+}$, définir oxydant, réducteur, oxydation et réduction. Donner la demi-équation du couple $Cr_2O_7^{2-}/Cr^{2+}$, et calculer le nombre d'oxydation du chrome dans les deux espèces. Justifier que $Cr_2O_7^{2-}$ est l'oxydant. Ecrire l'équation de réaction des éthylotests entre $Cr_2O_7^{2-}$ et CH_3CH_2OH du couple CH_3CO_2H/CH_3CH_2OH .
- ✓ Utiliser la relation de Nernst pour calculer le potentiel d'une solution contenant $[Cu^{2+}] = 0,1$ mol/L, on donne $E^0(Cu^{2+}/Cu) = 0,34$ V. Décrire une pile Daniell, et dire quelle réaction se produit à chaque électrode. Expliquer comment calculer sa capacité.
- △ Utiliser la relation de Nernst pour calculer le potentiel d'une solution contenant $[Cu^{2+}] = 0, 1 \text{ mol/L}$, on donne $E^0(Cu^{2+}/Cu) = 0, 34 \text{ V}$. Calculer la constante de la réaction entre Fe^{3+} et $S_2O_3^{2-}$ des couples Fe^{3+}/Fe^{2+} $(E_1^0 = 0, 77 \text{ V})$ et $S_4O_6^{2-}/S_2O_3^{2-}$ $(E_2^0 = 0, 08 \text{ V})$. Donner un critère arbitraire sur les potentiels standards pour avoir une réaction totale.
- \triangle On donne $E^0(S_4O_6^{2-}/S_2O_4^{2-})=0.08$ V et $E^0(S_2O_3^{2-}/S)=0.50$ V. Montrer que $S_2O_3^{2-}$ se dismute et écrire l'équation bilan de dismutation. Donner la constante d'équilibre, et dire à quelle condition les ions thiosulfates $S_2O_3^{2-}$ sont instables. Expliquer ce qu'est une médiamutation (+exemple).

Pour la semaine suivante...

★ Oxydo-réduction. Thermodynamique.